

Comune di Arzignano

Gli estensori del PAESC:

TerrAria srl

Via Melchiorre Gioia 132 Milano

Team

Comune di Arzignano

Giorgio Gentilin _ Sindaco

Alessandra Maule _ Dirigente Settore Economico Finanziario - Ambiente

Giovanni Panagin _ Responsabile servizio ambiente e paesaggio

Davide Zorzanello _ Tecnico incaricato

TerrAria srl _ estensore del Piano

Giuseppe Maffeis _ Responsabile del progetto
Luisa Geronimi _ Referente tecnico e supporto alla stesura del PAESC
Alice Bernardoni _ Elaborazione dati e stesura PAESC

Indice

0.	INTR	ODUZIONE7
	0.1	CONTENUTI DEL PAESC7
	0.1.1	La Baseline
	0.1.2	Il Piano di Azione per la Mitigazione10
	0.1.3	Il Piano d'Azione per l'Adattamento10
	0.2	PERCORSO LOGICO
	-	FORMALIZZAZIONE DELL'ADESIONE AL PATTO DEI SINDACI PER IL CLIMA E GIA DEI COMUNI
1.	INQU	JADRAMENTO TERRITORIALE12
	1.1 SI	STEMI DELL'AMBITO12
	1.2	ASPETTI SOCIOECONOMICI13
	1.2.1	La popolazione13
	1.2.1	La caratterizzazione energetica dell'edificato residenziale14
	1.2.2	Gli addetti e le attività terziarie-industriali17
	1.2.3	Il parco veicolare18
	1.3	QUADRO PROGRAMMATICO DEGLI STRUMENTI VIGENTI19
	1.3.1	Gli Strumenti sovracomunali di Mitigazione e Adattamento19
	1.3.2	Strumenti locali20
2.	BASI	ELINE EMISSION INVENTORY22
	2.1	METODOLOGIA DEL BASELINE22
	2.1.1	La costruzione degli inventari emissivi
	2.1.2	Procedura di disaggregazione23
	2.1.3	Indicatori25
	2.1.4	La stesura del piano d'azione25
	2.1.5	La valutazione dei singoli interventi26
	2.1.6	La definizione delle azioni di intervento27
	2.2	RACCOLTA DATI28
	2.3	ANALISI DEI CONSUMI29

	2.3.1	1 Gli edifici comunali	.29
	2.3.2	2 L'illuminazione pubblica	31
	2.3.	3 Il parco veicoli comunale	. 32
	2.3.4	4 I consumi elettrici rilevati dal distributore	. 32
	2.3.5	5 I consumi termici rilevati dal distributore	33
	2.4	CONFRONTO TRA I DATI DISAGGREGATI E I DATI REPERITI DAI DISTRIBUTO)R
	ENERC	GETICI	34
	2.4.1	1 Il confronto dei consumi di energia elettrica	34
	2.4.2	2 Il confronto dei consumi di gas naturale	35
	2.5	ANALISI DELLA PRODUZIONE LOCALE DI ENERGIA	35
	2.5.1	1 La produzione locale di energia elettrica	35
	2.6	BEI: L'INVENTARIO AL 2005	36
	2.6.1	1 I consumi energetici finali	36
	2.6.2	2 Le emissioni totali	40
3.	ANA	ALISI DEI RISCHI E DELLE VULNERABILITA'	44
	3.1	ELEMENTI RILEVANTI A LIVELLO SOVRACOMUNALE	44
	3.1.1	Le risorse idriche	46
	3.1.2	Gli ecosistemi, le biodiversità, le foreste e le aree protette	47
	3.2	RISCHI E VULNERABILITA' PRESENTI NEL COMUNE	47
	3.2.1	1 Il comune di Arzignano	49
4.	OBI	ETTIVO DI CONTENIMENTO DELLE EMISSIONI AL 2030	.52
	4.1	SCENARIO BUSINESS AS USUAL E OBIETTIVO MINIMO DEL PATTO DEI SINDACI	52
	4.1.1	1 La valutazione dell'andamento 2005-2015	52
	4.1.2	La valutazione degli incrementi emissivi 2005-2030	56
	4.1.3	3 Il calcolo dell'obiettivo di riduzione delle emissioni	57
	4.2	SCENARIO BUSINESS AS USUAL E OBIETTIVO MINIMO DEL PATTO DEI SINDACI	60
5.	VISI	ON E L'OBIETTIVO DEL PATTO DEI SINDACI	62
	5.1	VISION TERRITORIALE	.62
	5.2	DEFINIZIONE DELLE STRATEGIE E DELLE AZIONI	.63
	5.3	SCENARIO OBIETTIVO DEL PAESC	.70
6.	AZIO	ONI DI MITIGAZIONE	.79
	6.1	SCHEDE DELLE AZIONI	.79

Comune di Arzignano

	6.1.	1 Le azioni del settore terziario comunale	83
	6.1.	2 Le azioni del settore terziario non comunale	87
	6.1.	3 Le azioni del settore residenziale	91
	6.1.	4 Le azioni del settore illuminazione pubblica	.109
	6.1.	5 Le azioni del settore dei veicoli comunali e mobilità sostenibile	111
	6.1.	6 Le azioni del settore dei trasporti privati e commerciali	117
	6.1.	7 Le azioni del settore della pianificazione e della sensibilizzazione	119
7.	AZI	ONI DI ADATTAMENTO	. 125
	7.1	QUADRO DI VALUTAZIONE DEL CONTESTO	. 125
	7.2	DEFINIZIONE E DESCRIZIONE DELLE AZIONI	. 128
	7.3	REPORT DELL'ADATTAMENTO	. 130
8.	SIS	TEMA DI MONITORAGGIO	. 133
	8.1	RUOLO DELL'AMMINISTRAZIONE COMUNALE	. 133
	8.1.	1 La raccolta dati	. 133
	8.1.	2 Il monitoraggio delle azioni	. 134
	8.2	SOFTWARE CO ₂₀	. 134
9.	CON	NCLUSIONI	141
	9.1	CONTESTO COMUNALE	141
	9.2	ESITI DEL BEI	141
	9.2.	1 Rischi e vulnerabilità	. 142
	9.3	BEI-MEI	.144
	9.4	OBIETTIVO DI RIDUZIONE DELLE EMISSIONI AL 2030	. 145
	0.5	VISION E AZIONI	116

Glossario

Ab abitanti

AC Amministrazione comunale AACC Amministrazioni comunali AT Ambiti di Trasformazione **Baseline Emission Inventory** BEI

PAESC_ Piano d'azione per l'energia sostenibile e il clima Comune di Arzignano

COMO Covenant of Mayors Office ETS Emission Trading Schemes FER Fonti Energetiche Rinnovabili

JRC Joint Research Centre

MEI Monitoring Emission Inventory
MFR Maximum Feasible Reduction

PAES Piano di Azione per l'Energia Sostenibile

PAESC Piano di Azione per l'Energia Sostenibile ed il Clima

PAT Piano di Assetto Territoriale

PLIS Parco Locale di Interesse Sovracomunale

RE Regolamento Edilizio Comunale Slp Superficie lorda di pavimento

St Superficie territoriale

VAS Valutazione Ambientale Strategica PEC Piano di Emergenza Comunale

CAGR Compound Annual Growth Rate, tasso di crescita annuo composto

PICIL Piano dell'Illuminazione per il Contenimento dell'Inquinamento Luminoso

SNACC Strategia Nazionale di Adattamento al Cambiamento Climatico PNACC Piano Nazionale di Adattamento al Cambiamento Climatico

O. INTRODUZIONE

0.1 CONTENUTI DEL PAESC

Il Patto dei Sindaci per il clima e l'energia coinvolge le autorità locali e regionali impegnate su base volontaria a raggiungere sul proprio territorio gli obiettivi UE per l'energia e il clima. E' un movimento inclusivo dal basso, iniziato nel 2008 con il supporto della Commissione Europea, che conta attualmente oltre 7,200 firmatari. Nel 2015 l'iniziativa del Patto dei Sindaci assume una prospettiva di più lungo termine: con il Patto dei Sindaci per il clima e l'energia viene aumentato l'impegno inizialmente preso dal Patto dei Sindaci per la riduzione delle emissioni di CO₂ con l'intento di favorire anche l'adattamento ai cambiamenti climatici. L'orizzonte temporale si allunga con l'obiettivo di accelerare la decarbonizzazione dei territori coinvolti nel processo, di rafforzare la capacità di adattamento agli inevitabili effetti dei cambiamenti climatici e di garantire ai cittadini l'accesso a un'energia sicura, sostenibile e alla portata di tutti; lo scenario temporale infatti si sposta dal 2020 al 2030, raddoppiando l'obiettivo minimo di riduzione della CO₂ (dal 20% al 40%). I firmatari si impegnano a sviluppare entro il 2030 dei Piani d'Azione per l'Energia Sostenibile e il Clima (PAESC), e ad adottare un approccio congiunto per l'integrazione di mitigazione e adattamento ai cambiamenti climatici. Il nuovo PAESC prevede due elementi centrali ed uno trasversale di efficienza energetica e di incremento dell'uso delle fonti rinnovabili:

- 1. la **mitigazione** (obiettivo già presente nel PAES) la riduzione delle emissioni di CO₂ (decarbonizzazione dei territori);
- 2. l'adattamento (nuovo obiettivo del PAESC) la riduzione dei rischi legati ai cambiamenti climatici.

Figura 0-1: la finalità del PAESC (fonte: linee guida per la stesura del PAESC)

Gli impegni e la visione dei firmatari

Lavorare insieme a una visione condivisa per il 2050

Di seguito si riporta lo schema presente nelle "Linee Guida per la stesura del PAESC" che restituisce le fasi principali del percorso di definizione dello stesso, che prevede tre passaggi:

- ➤ Fase 1 Firma del Patto dei Sindaci per il clima e l'energia e il clima;
- ➤ Fase 2 Entro due anni dalla adesione e l'invio del PAESC;
- ➤ Fase 3 Entro 4 anni dall'approvazione del PAESC l'invio del "Report di Monitoraggio sulle azioni" ed entro 6 anni dall'approvazione del PAESC il "Resoconto Completo del Monitoraggio".

Figura 0-2: iter di approvazione del PAESC (fonte: linee guida per la stesura del PAESC)

Il documento di PAESC comprende tre principali parti di seguito brevemente descritte a cui si rimanda maggior approfondimento ai capitoli successivi: l'inventario comunale dei consumi energetici e delle emissioni di CO₂ - BEI (Baseline Emission Inventory) ed il quadro dei rischi e delle vulnerabilità a cui è soggetto il territorio comunale, il Piano di Azione per la decarbonizzazione e il Piano di Azione per l'Adattamento.

0.1.1 La Baseline

L'attività consiste nell'elaborazione del bilancio dei consumi per settore (terziario pubblico e privato, residenziale, illuminazione pubblica, attività produttive, agricoltura, trasporto pubblico, trasporto privato, con esclusione dei settori non di competenza comunale: industrie ETS e strade di attraversamento) e per vettore (gas naturale, gasolio, energia elettrica, ...). Il bilancio dei consumi è stimato per l'anno di riferimento concordato all'anno 2005 e all'anno 2015 (tenendo conto che quest'ultimo anno non è ancora a disposizione come bilancio regionale su SIRENA20).

Nel BEI (Baseline Emission Inventory) e nel MEI (Monitoring Emission Inventory) è stimata la produzione elettrica e termica da fonti rinnovabili e di conseguenza sulla base dei fattori di emissione IPCC si ricostruisce il bilancio delle emissioni comunali di CO₂.

Infine, sulla base degli sviluppi territoriali ed insediativi previsti dal Piano di Assetto Territoriale (PAT) e delle dinamiche socio-economiche, si definisce uno scenario "business as usual" che consente di stimare l'obiettivo di riduzione delle emissioni del PAESC: tutte le ipotesi procapite/assoluto, con e senza l'industria, sono valutate in modo da dare tutto lo spettro delle possibili scelte.

0.1.2 Il Piano di Azione per la Mitigazione

La fase consiste nell'elaborazione del Piano di Azione a partire dalle risultanze della precedente Baseline, dello scenario tendenziale, dell'obiettivo che è ragionevole porsi e sulla base dell'esito e delle indicazioni dell'Amministrazione Comunale.

Il Piano d'Azione ha come obiettivo minimo la riduzione del 40% al 2030 delle emissioni di CO₂ (procapite o assolute, includendo o meno la parte dell'industria non ETS) rispetto a quelle dell'anno di riferimento 2005, confrontate con quelle al 2015. Il PAESC prevede strategie generali finalizzate alla razionalizzazione dei consumi energetici in ciascun comparto e successivamente alla produzione efficiente e rinnovabile; le strategie sono differenziate per esistente e di nuova edificazione e sono articolate in azioni specifiche le quali sono approfondite in specifiche schede qualitative e quantitative. Per ciascuna azione attraverso il software CO₂₀, è valutato oltre al beneficio in termini di riduzione delle emissioni ed il contributo all'obiettivo, la riduzione del consumo energetico, l'incremento di produzione di energia da FER, il costo dell'azione per l'Amministrazione Comunale o per il privato che l'intraprenda ed il tempo di ritorno.

Deve essere data particolare enfasi all'approfondimento delle tematiche relative al settore pubblico ovvero Illuminazione Pubblica, parco auto comunale ed Edifici Pubblici, ove gli Enti Locali possono maggiormente incidere.

0.1.3 Il Piano d'Azione per l'Adattamento

Nello specifico per quanto riguarda l'obiettivo di adattamento ai cambiamenti climatici, il PAESC ragiona in termini di riduzione del rischio cui i territori sono esposti in ragione della loro vulnerabilità, grazie alle azioni di adattamento al rischio futuro legato ai cambiamenti climatici. Per la definizione dei rischi in termini di impatti (es. idrogeologico, incendi boschivi ...) e di vulnerabilità (urbanizzato, edifici sensibili ...) si fa riferimento all'Allegato geologico del PAT e ai documenti messi a disposizione dal Comune. Per la valutazione di come questo rischio possa modificarsi a causa del cambiamento climatico, si fa riferimento alle serie storiche di dati meteorologici della banca dati SCIA di ISPRA, mentre per le serie storiche previste di dati meteorologici, alle simulazioni modellistiche dell'IPCC nell'ambito territoriale di interesse.

0.2 PERCORSO LOGICO

Il percorso di determinazione delle scelte di Piano è articolato in passaggi successivi e consequenziali, frutto delle interlocuzioni dei soggetti cointeressati alle opportunità che lo stesso definisce.

Il percorso di costruzione del PAESC di Arzignano passa attraverso le seguenti fasi:

CONTESTUALIZZAZIONE

Analisi di inquadramento territoriale e socioeconomico dell'ambito di riferimento.

BASELINE

Analisi del bilancio energetico comunale al 2015 ed il conseguente inventario delle emissioni di gas serra a livello comunale; analisi degli impatti e della vulnerabilità del territorio ad oggi e conseguente definizione dei rischi.

VISION

Costruzione collettiva di una vision territoriale in campo energetico e dell'adattamento.

OBIETTIVI, STRATEGIE e AZIONI DI PIANO

L'obiettivo e le strategie di Piano (AZIONE per la MITIGAZIONE e per l'ADATTAMENTO) sono finalizzate a indirizzare le azioni che permettano di orientare l'obiettivo di riduzione del 40% delle emissioni di CO₂ rispetto a quelli dell'anno di riferimento (2005) al 2030.

SCHEDE DELLE AZIONI

Il passaggio finale di questo percorso è rappresentato dalla elaborazione delle schede qualitative e quantitative di ogni singola azione.

o.3 FORMALIZZAZIONE DELL'ADESIONE AL PATTO DEI SINDACI PER IL CLIMA E L'ENERGIA DEI COMUNI

Il comune di Arzignano ha deliberato in Consiglio Comunale n 29 del 18/04/2016 la sottoscrizione al Patto dei Sindaci per il Clima impegnandosi a predisporre il PAESC per raggiungere l'obiettivo di:

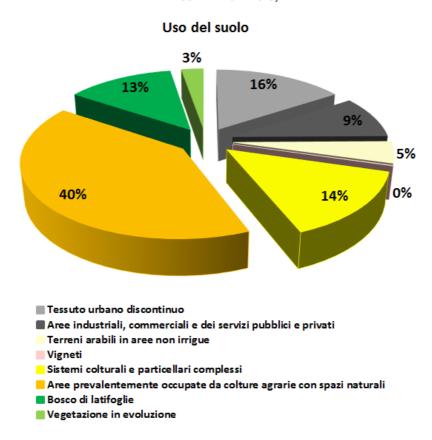
- iriduzione di almeno il 40% delle emissioni di CO₂ al 2030 rispetto all'inventario emissivo all'anno di riferimento (Baseline) in particolare mediante una migliore efficienza energetica e un maggiore impiego di fonti di energia rinnovabili;
- accrescere la loro resilienza adattandoci agli effetti del cambiamento climatico;
- mettere in comune la loro visione, i loro risultati, la loro esperienza e il loro know-how con le altre autorità locali e regionali dell'UE e oltre i confini dell'Unione attraverso la cooperazione diretta e lo scambio inter pares, in particolare nell'ambito del patto globale dei sindaci.

Dalla data di sottoscrizione del Patto dei Sindaci la Comunità Europea impone entro 2 anni la presentazione del PAESC.

1. INQUADRAMENTO TERRITORIALE

1.1 SISTEMI DELL'AMBITO

Il comune di Arzignano, in provincia di Vicenza, è collocato sui Monti Lessini e arriva fino alla Valle del Chiampo, nella zona Ovest della provincia di Vicenza, fortemente caratterizzata dalla presenza del Torrente Chiampo che ha un ruolo rilevante anche nella conurbazione del Comune. Arzignano è situato a 20 km da Vicenza in direzione ovest, vicino alla Provincia di Verona, confina con i comuni di Trissino, Nogarole Vicentino, Chiampo, Roncà (VR), Montorso e Montecchio Maggiore. Si estende per una superficie di 34.34 km² e ad una quota compresa tra i 76 m e i 630 m s.l.m, comprende territori collinari, aree di pianura e di fondovalle. E' attraversato da nord a sud dal Torrente Chiampo ed in direzione nord-est sud-est dal Torrente Agno che nel territorio comunale di Arzignano prende il nome di Guà, il Torrente Restena confluisce nel Guà all'altezza di Tezze dove forma la Valle Restena. A sud ovest di Arzignano si trova il rilievo collinare che segna il confine tra le province di Vicenza e Verona e che funge da spartiacque tra i bacini idrografici del Chiampo e del veronese Illasi. Arzignano è quindi al confine tra la pianura alluvionale e le colline di origine vulcanica. Il Comune è composto da 7 frazioni suddivise tra l'area pianeggiante e collinare del territorio comunale, il centro storico si estende sul pianoro del Chiampo, la zona più a sud del comune è occupata dall'area industriale. La maggior parte del territorio è collinare (22 kmq) mentre i restanti 12 kmq sono di pianeggianti.


Figura 1-1: Foto aerea del comune di Arzignano (fonte Google Maps)

Sul territorio comunale non sono presenti aree afferenti alla Rete Natura ma sono state riconosciuti degli elementi di pregio ambientale come il Bosco di Costalta, rovereto tipico dei substrati vulcanici, il Bosco della Calvarina, tipico castagneto, i Fossi di Tezze, particolare habitat che favorisce la presenza di anfibi e rettili, le Rotte del Guà, habitat favorevole alla presenza di numerose specie di uccelli.

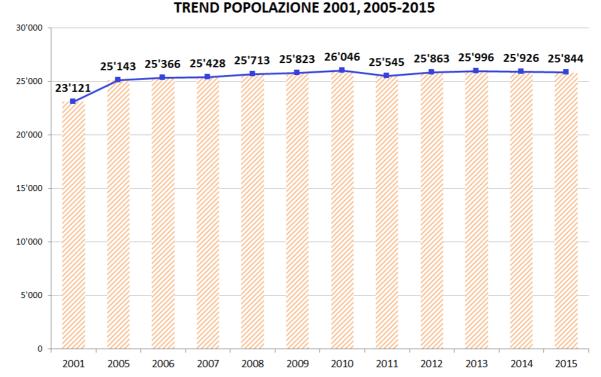
Il territorio del comune di Arzignano è caratterizzato principalmente dalla presenza di aree agricole che, occupando circa il 40% del suolo complessivo, costituiscono la tipologia di uso del suolo più significativa. Segue il tessuto urbano che costituisce il 25% del totale, in particolare il 16% del territorio è adibito ad ambiti residenziali, il 9% ad ambiti produttivi. Il 14% del territorio è occupato da sistemi colturali e particellari, il 16% da vegetazione (13% bosco e 3% vegetazione in evoluzione), il 6% è occupato da terreni arabili e vigneti.

Figura 1-2: Distribuzione percentuale delle classi di uso del suolo del comune di Arzignano (Fonte: elaborazione da carta DUSAF – ERSAF 2015)

1.2 ASPETTI SOCIOECONOMICI

1.2.1 La popolazione

In figura 2-2 si riporta l'andamento della popolazione residente nel comune di Arzignano dal 2001 al 2015 (fonte dati: ISTAT): è possibile osservare in generale un aumento della popolazione tra il



2005 e il 2015, si può però notare un incremento tra il 2005 e il 2010, un calo tra il 2010 e il 2011 e poi di nuovo un trend di crescita tra il 2011 e il 2015. Tra il 2005 e il 2015 la crescita della popolazione si attesta al 3%, con un tasso annuo pari a circa lo 0.3%. Considerando il periodo 2001-2015, invece, l'incremento di popolazione è pari al 12%.

Il tasso di crescita annuo composto (CAGR – Compound Annual Growth Rate) della popolazione del comune di Arzignano, calcolato rispetto ai quindici anni dal 2001 al 2015, è pari a 0.8%. Valutando l'andamento dell'incremento della popolazione tra il 2005 e il 2015 emerge una crescita inferiore rispetto a quanto previsto valutando anche il periodo 2001 – 2005, si è quindi scelto di ipotizzare una crescita della popolazione pari 1'131 persone tra il 2005 e il 2030, per un totale di 26'274 abitanti al 2030 (CAGR pari a 0.3%).

Figura 1-3: trend della popolazione residente nel comune di Arzignano, dati del 2001 e 2005 – 2015 (fonte: ISTAT)

1.2.1 La caratterizzazione energetica dell'edificato residenziale

Nella tabella che segue si analizza il patrimonio edilizio comunale in funzione dell'epoca in cui è stato realizzato: queste informazioni costituiscono un elemento importate per l'individuazione delle modalità costruttive adottate, direttamente connesse alle performance energetiche medie degli edifici. I dati utilizzati fanno riferimento al 15° Censimento generale della popolazione e delle abitazioni ISTAT del 2011.

Dalle elaborazioni svolte e mostrate in Tabella 1-1 si evince che gli edifici con un numero di piani inferiore o pari a 2 sono i più diffusi in quanto rappresentano il 66% degli edifici totali. Circa il 77% del patrimonio edilizio del Comune risulta essere stato costruito prima del 1981, principalmente

tra il 1962 e il 1981 (45% pari a 2'579 edifici). Più recentemente, tra il 2002 e il 2011, è stato costruito il 7% del patrimonio edilizio complessivo (pari a 403 edifici).

Tabella 1-1: numero di edifici e abitazioni per tipologia ed epoca costruttiva presenti nel comune di Arzignano al 2011 (fonte: ISTAT – nostra elaborazione)

NUMERO DI ABITAZIONI								
	Epoca di costruzione							Totale
Tipologia di edificio	Fino 1945	Dal 1946 al 1961	Dal 1962 al 1981	Dal 1982 al 1991	Dal 1992 al 2001	Dal 2002 al 2011	TOTALE	[%]
Numero di piani < = 2	704	930	2'770	633	701	585	6'322	54%
Numero di piani > 2	601	795	2'366	540	599	499	5'401	46%
TOTALE	1'305	1'725	5'136	1'173	1'300	1'084	11'723	100%
Totale [%]	11%	15%	44%	10%	11%	9%	100%	

EDIFIC	ı
TOTALE	Totale [%]
3'764	66%
1'972	34%
5'736	100%

EDIFICI	TOTALE	898	926	2'579	489	441	403	5'736
EDIFICI	Totale [%]	16%	16%	45%	9%	8%	7%	100%

Analizzando i dati in tabella, elaborati a partire dalla distribuzione del numero di abitazioni per epoca e dalla tabella che riporta il numero di edifici per numero di piani fornite da ISTAT, è possibile osservare che le percentuali delle abitazioni con numero di piani inferiori a 2 sono lievemente prevalenti rispetto a quelle con numero di piani superiore a 2 (54% e 46% rispettivamente). Inoltre si deduce che il 70% delle abitazioni si trova in edifici costruiti prima del 1981, soprattutto, come per gli edifici, tra il 1962 e il 1981 (44%), seguite da quelle costruite tra il 1946 e il 1961 (15%). Dai dati ISTAT si può infine ricavare il numero medio di unità abitative per edificio, pari a 2 (dato riferito al 2011).

La Tabella 1-2 spiega i consumi energetici stimati per tipologia ed epoca costruttiva. Tale suddivisione risulta di particolare rilevanza ai fini dell'analisi energetica, in quanto solamente alla fine degli anni '70 sono entrate in vigore le prime leggi con prescrizioni di efficienza e risparmio energetico. I consumi residenziali riportati nel BEI, con esclusione del vettore elettrico, sono stati distribuiti nelle differenti epoche costruttive sulla base dei consumi.

Tabella 1-2: consumi energetici (in MWh) stimati per tipologia ed epoca costruttiva nel comune di Arzignano (fonte: ISTAT, BEI 2015 – nostra elaborazione)

CONSUMI BEI 2005 [MWh]								
	Epoca di costruzione							Totale
Tipologia di edificio	Fino 1945	Dal 1946 al 1961	Dal 1962 al 1981	Dal 1982 al 1991	Dal 1992 al 2001	Dal 2002 al 2011	TOTALE	[%]
Numero di piani < = 2	17'089	18'622	46'729	8'593	9'003	7'096	107'133	58%
Numero di piani > 2	12'174	13'445	33'910	6'226	6'534	5'158	77'448	42%
TOTALE	29'264	32'067	80'639	14'820	15'536	12'255	184'581	100%
Totale [%]	16%	17%	44%	8%	8%	7%	100%	

Dei circa 184 GWh di consumo annuo per la climatizzazione invernale del settore residenziale del Comune la parte più significativa è attribuibile ad edifici costruiti tra il 1962 e il 1981 (44%), più in generale il 77% è attribuibile ad edifici che hanno più di 30 anni di vita. Si evidenzia, inoltre, che i consumi sono attribuibili principalmente agli edifici con numero di piani inferiore o uguale a 2 (58%).

Relativamente alla disponibilità di servizi (Tabella 1-3) e in particolare alla tipologia impiantistica per la climatizzazione invernale, dal censimento ISTAT è possibile stimare che il 91% delle abitazioni riscaldate da impianti fissi dispone di impianto autonomo; si evidenzia inoltre che nel 93% circa delle abitazioni che dispongono di acqua calda è presente un impianto unico utilizzato sia per il riscaldamento dell'abitazione che per soddisfare il fabbisogno di acqua calda sanitaria.

Tabella 1-3: numero di abitazioni per disponibilità di servizi al 2011 (fonte: ISTAT – nostra elaborazione)

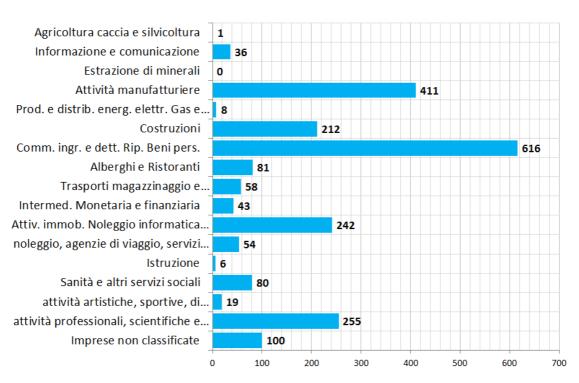
ABITAZIONI OCCUPATE RISCALDATE							
Anno	Da impianto autonomo	Da impianto centralizzato	TOTALE *				
2011	8'963	904	9'867				
Totale [%]	91%	9%	100%				

ABITAZION	ABITAZIONI OCCUPATE CON ACQUA CALDA SANITARIA							
Anno	Impianto unico (riscald. + acs)	Impianto acs separato **	TOTALE					
2011	9'240	740	9'980					
Totale [%]	93%	7%	100%					

^{*:} totale delle abitazioni occupate riscaldate da impianti fissi.

In base al censimento ISTAT al 2011 si individua che sono presenti sul territorio di Arzignano 11'174 impianti di riscaldamento di cui 526 centralizzati (4.7%).

^{**:} calcolato per differenza rispetto al totale fornito da ISTAT.

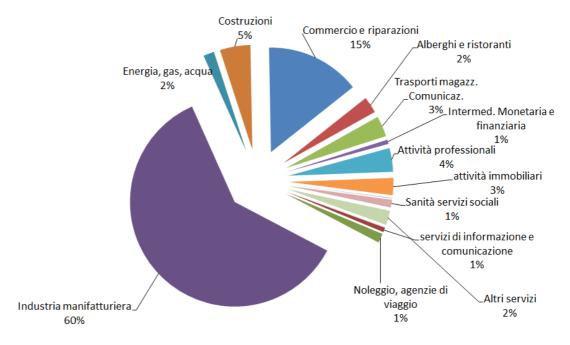

Tabella 1-4: stima del numero di impianti di riscaldamento fissi per tipologia al 2011 (fonte: ISTAT – nostra elaborazione)

IMPIANTI DI RISCALDAMENTO						
Anno	Autonomi	Centralizzati				
2011	10'649	526				

1.2.2 Gli addetti e le attività terziarie-industriali

In Figura 1-4 si mostra le imprese attive per categoria nel Comune in base ai dati Istat del 2011. La tipologia di attività prevalenti risulta essere quella legata al commercio con 616 imprese attive, seguono le attività manifatturiere con 411 imprese. Al terzo posto le attività professionali, le imprese di costruzione e le attività immobiliari e di noleggio (più di 200 imprese per categoria).

Figura 1-4: imprese attive per categoria nel comune di Arzignano, dati 2011 (fonte: ISTAT)


IMPRESE ATTIVE PER CATEGORIA - 2011

Nella figura seguente si rappresentano gli addetti suddivisi per categoria nel comune di Arzignano. I dati sono relativi al censimento ISTAT del 2011. Si può notare come la maggior parte degli addetti sia impiegata nell'industria manifatturiera (7'280 addetti, pari al 60%), seguita da commercio e riparazioni (1'755 addetti pari al 15%) e costruzioni (568 addetti, pari al 5%).

Figura 1-5: addetti per categoria nei comuni di Arzignano, dati del 2011 (fonte: ISTAT)

ADDETTI PER CATEGORIA AL 2011

Totale addetti al 2011: 12'011

Nel 2011 il rapporto addetti/popolazioni era pari al 52%, il 41% impiegato nell'industria manifatturiera.

1.2.3 Il parco veicolare

In Figura 1-6 si mostra il parco veicolare per categoria nel Comune e la sua evoluzione tra il 2005 e il 2015. Dal grafico si evince che negli ultimi 10 anni il parco veicolare abbia subito un contenuto incremento (pari al 6%), per un totale di 1'167 unità. In particolare si registrano aumenti rilevanti nel numero di motocicli (629 vetture, pari al 35%); subisce invece una riduzione significativa il numero di rimorchi e semirimorchi (300 veicoli in meno, -96%).

Figura 1-6: parco veicolare per categoria nel comune di Arzignano, dati del 2005 e del 2015 (fonte: ACI)

Trattori stradali o motrici 61 **2015 2005** 198 Rimorchi e semirimorchi trasporto merci 173 13 Rimorchi e semirimorchi speciali/specifici 313 21 Motoveicoli e quadricicli speciali/specifici 12 2'439 Motocicli 1'810 25 Motocarri e quadricicli trasporto merci 29 16'094 Autovetture 15'407 339 Autoveicoli speciali/specifici 303 2'036 Autocarri trasporto merci 2'006 53 Autobus 31 2'000 4'000 6'000 8'000 10'000 12'000 14'000 16'000 18'000

PARCO VEICOLARE 2005-2015

1.3 QUADRO PROGRAMMATICO DEGLI STRUMENTI VIGENTI

1.3.1 Gli Strumenti sovracomunali di Mitigazione e Adattamento

La comunità internazionale ha dedicato spazio ai cambiamenti climatici anche all'interno del Sustainable Development Goals (2005-2030) a cui è riservato l'obiettivo 13 "Take urgent actions to combat climate change and its impacts". Le misure di adattamento, necessarie e complementari a quelle di mitigazione, devono essere prese a tutti i livelli, con interventi locali, regionali e nazionali, come riconosciuto dall'Unione Europea nella sua Strategia Europea di Adattamento ai cambiamenti climatici (COM 2013/ 216) adottata nel 2013 e pubblicata sulla piattaforma web "Climate Adapt" (http://climate-adapt.eea.europa.eu/).

Altro passaggio importante per le politiche sui cambiamenti climatici, ed in particolare sui temi delle mitigazioni, è l'entrata in vigore dell'Accordo di Parigi nel 2016, che prevede nuovi impegni rivolti ad accrescere la capacità di adattamento degli impatti avversi del cambiamento climatico, promuovere la resilienza e uno sviluppo a basse emissioni.

Proprio all'interno di tale scenario internazionale la "Strategia Nazionale di Adattamento ai Cambiamenti Climatici (SNACC)" (approvata con Decreto direttoriale n. 86 del 16 giugno 2015) costituisce un importante strumento di analisi con l'obiettivo di identificare i principali settori che

subiranno gli impatti del cambiamento climatico, definendo gli obiettivi strategici e le azioni per la mitigazione degli impatti.

La Regione Veneto ha approvato il **Programma Energetico Ambientale Regionale (PEAR)** con la Delibera di Consiglio Regionale n.6 del 9 febbraio 2017 (Bollettino Ufficiale della Regione Veneto n. 20del 21 febbraio 2017).

Per il raggiungimento degli obiettivi del Burden Sharing le politiche regionali messe in campo sono le seguenti:

- ☐ La riduzione di consumi e sprechi energetici e l'incremento dell'efficienza;
- ≥ L'aumento del ricorso alle fonti rinnovabili per l'approvigionamento del fabbisogno energetico;
- ≥ La diminuzione della dipendenza dalle importazioni e quindi l'aumento della sicurezza energetica;
- ☐ Il miglioramento delle prestazioni del sistema energetico;
- ☑ Il contenimento delle emissioni di CO2 equivalente;
- La compatibilità ambientale e di sicurezza sociale dei sistemi energetici;
- צ Il miglioramento della qualità della vita e la salubrità degli insediamenti urbani;
- ∠ L'uso sostenibile delle risorse naturali;
- ☐ La salvaguardia della natura e conservazione della biodiversità.

Per quanto attiene allo sviluppo delle fonti rinnovabili, l'obiettivo assegnatole dallo Stato è pari al +10,3%.

1.3.2 Strumenti locali

Di seguito si riporta una sintesi dei principali strumenti di pianificazione locale che potenzialmente hanno effetti nella definizione delle azioni del PAESC del Comune di Arzignano.

Territoriale

Piano di Assetto La Variante n.1 del PAT è stata approvata a seguito di una Conferenza dei Servizi in data 23/12/2015, la variante è stata ratificata dal Presidente della Provincia di Vicenza col Decreto n.5 del 21 gennaio 2016.

> Nel documento "Norme Tecniche di Attuazione" del Documento Preliminare sono elencati gli obiettivi di Piano, in particolare gli obiettivi:

- 니 C: soddisfacimento della domanda edilizia prevalentemente attraverso il recupero e la riqualificazione di contesti già urbanizzati
- ≥ E incentivazione alla realizzazione di edilizia con contenuti di risparmio energetico e sostenibilità ambientale (bio-edilizia)
- ☐ F: utilizzo sostenibile di risorse limitate, quali il suolo, l'acqua, le fonti energetiche

Piano di Emergenza Approvato nel 2007.ed è attualmente in corso una revisione generale (2017)

PICIL Approvato nel 2011

2. BASELINE EMISSION INVENTORY

2.1 METODOLOGIA DEL BASELINE

Il Baseline Emission Inventory (BEI) è l'inventario delle emissioni annue di CO₂ al 2005 relative agli usi energetici finali attribuibili ad attività di competenza diretta e/o indiretta dell'AC. Alle prime fanno capo i consumi energetici del patrimonio edilizio pubblico, dell'illuminazione pubblica e del parco veicolare del Comune. Alle seconde si riferiscono le emissioni del patrimonio edilizio privato, del terziario, delle piccole e medie imprese (non ETS), dell'agricoltura e del trasporto in ambito urbano che risulti regolato dalle attività pianificatorie e regolatorie dell'AC. L'indagine conoscitiva condotta sul territorio approfondisce sia i dati di banche dati di livello nazionale/regionale/provinciale (ISPRA, INEMAR, CENED, ATLASOLE, dati del distributore di energia elettrica – EDistribuzione ...) sia di livello comunale (dati del distributore gas naturale, altri dati di consumo, dati sul patrimonio edilizio privato, attività produttive, attività commerciali ...). Tale attività è svolta in stretta collaborazione con gli Uffici Tecnici Comunali.

Il BEI quantifica la CO₂ emessa nel territorio dell'autorità locale (ossia del Firmatario del Patto) durante l'anno di riferimento ed è di importanza cruciale in quanto rappresenta lo strumento attraverso il quale misurare l'impatto dei propri interventi relativi alle azioni di mitigazione della CO₂ ed al cambiamento climatico. Infatti, mentre il BEI mostra la situazione di partenza per l'autorità locale, i successivi inventari di monitoraggio delle emissioni (Monitoring Emission Inventory – MEI), previsti nella Fase 3 del Patto dei Sindaci per il clima e l'energia, mostreranno il progresso rispetto all'obiettivo. Gli inventari delle emissioni sono dunque elementi molto importanti per mantenere alta la motivazione di tutte le parti disposte a contribuire all'obiettivo di riduzione di CO₂ del territorio comunale, poiché consentono di constatare i risultati dei propri sforzi. Altro aspetto fondamentale legato all'inventario di base delle emissioni è la definizione dell'obiettivo complessivo di riduzione di CO₂, che deve essere almeno pari al 40% delle emissioni stimate per l'anno di riferimento dell'inventario.

2.1.1 La costruzione degli inventari emissivi

Per ricostruire il quadro energetico-emissivo comunale del BEI si è scelto di utilizzare l'inventario ISPRA al 2005 e al 2015 (http://www.sinanet.isprambiente.it/it/sia-ispra/inventaria) in sostituzione delle stime della banca dati SIRENA Factor20.

Il passaggio da consumi energetici a emissioni avviene attraverso i fattori di emissione dell'IPCC (Inter-governamental Panel for Climate Change) suggeriti dalle Linee Guida Europee che forniscono un valore di emissione (tonnellate di CO₂) per unità di energia consumata (MWh) per

ogni tipologia di combustibile. Per quanto riguarda l'energia elettrica, invece, nell'inventario emissivo al 2005 è stato adottato il fattore di emissione medio nazionale, pari a 0.483 t CO₂/MWh. In analogia con tale approccio, considerando inoltre che negli ultimi anni si è assistito ad un radicale cambiamento delle modalità con cui avviene la produzione elettrica sul territorio nazionale, per la redazione dell'inventario emissivo al 2016 si fa riferimento al fattore di emissione medio nazionale stimato da ISPRA, pari a 0.321 t CO₂/MWh.

tabella 2-1 _ fattori di emissione di alcuni dei principali combustibili (fonte: IPCC, disaggregazione – nostra elaborazione)

	FATTORI DI EMISSIO	NE [tCO ₂ /MWh]		
	VETTORI	FE		
	Energia elettrica	0.321		
<u></u>	Gas naturale	0.202		
ossil	GPL	0.227		
bili f	Olio combustibile	0.279		
Combustibili fossili	Gasolio	0.267		
om	Benzina	0.249		
	Lignite	0.364		
	Carbone	0.341		
	Rifiuti e biogas	0.330/2		
vabil	Olio vegetale	0		
ouu	Biocarburanti	0		
gie ri	Altre biomasse	0		
Energie rinnovabili	Solare termico	0		
ш	Geotermia	0		

Nei paragrafi successivi si descrive nel dettaglio la metodologia adottata per la definizione dell'inventario energetico - emissivo a livello comunale, illustrando la procedura generale utilizzata per effettuare la disaggregazione dei dati provinciali e specificando gli indicatori adottati per quanto riguarda il territorio di Arzignano.

2.1.2 Procedura di disaggregazione

Il metodo utilizzato per ricostruite gli inventari energetico - emissivi comunali a partire dai dati regionali e provinciali si basa su un approccio "top-down" che prevede l'utilizzo di variabili proxy, ovvero indicatori statistici i cui valori siano noti a livello regionale, provinciale e comunale. Tale procedura è descritta nel manuale EMEP-CORINAIR pubblicato sul sito dell'Agenzia Europea

dell'Ambiente e risulta essere già stata applicata con successo anche in numerosi casi italiani, quali, a titolo d'esempio:

- ≥ INEMAR: INventario EMissioni ARia, database progettato per realizzare l'inventario delle emissioni in atmosfera e utilizzato attualmente in sette regioni (Emilia Romagna, Friuli Venezia Giulia, Lombardia, Marche, Piemonte, Puglia e Veneto) e in due provincie autonome (Bolzano e Trento);
- ≥ SIRENA: Sistema Informativo Regionale ENergia e Ambiente, sistema per il monitoraggio della sicurezza, dell'efficienza e della sostenibilità del sistema energetico lombardo.

Risulta evidente come l'approccio semplificato adottato sia suscettibile di un certo margine d'errore, dipendente dal grado di correlazione presente tra l'indicatore considerato per la disaggregazione e il dato da disaggregare, quale, in questo caso, il consumo o l'emissione del settore/vettore.

Per ciascun settore e vettore è stato quindi necessario individuare un indicatore rappresentativo (si veda paragrafo 2.1.3), utilizzato per implementare il processo di disaggregazione spaziale attraverso la seguente formula:

$$E_{\sigma}(v,s,a) = E_{p}(v,s,a) \cdot \frac{Ind(v,s,a,c)}{\sum_{p} Ind(v,s,a,c)}$$

In cui:

≥ E = consumo energetico/emissione

≥ c = comune

p = provincia

≥ vettore

≥ settore

≥ a = anno

Tale formula è stata applicata all'inventario ISPRA della Provincia di Vicenza per l'anno 2005 e per l'anno 2015 così da ottenere i consumi energetici e le relative emissioni disaggregate a livello comunale.

Come anticipato in precedenza tale inventario emissivo è stato "depurato delle emissioni di CO₂ legate ai seguenti processi:

■ la produzione di energia (macrosettore 1);

y gli altri impianti ETS;

y il trasposto extraurbano ed autostradale;

☑ il trasporto aeroportuale e portuale;

≥ le emissioni legate a processi non energetici (es. carbonatazione).

Per l'energia elettrica si sono utilizzati gli usi finali dati dai consumi provinciali Terna, anch'essi disaggregati a scala comunale secondo la stessa procedura.

Si è deciso di utilizzare questa metodologia grazie alla sua replicabilità quinquennale e quindi grazie alla possibilità di rendere confrontabili gli inventari nei diversi anni considerati.

2.1.3 Indicatori

Come riportato nel paragrafo precedente, per ciascun settore e vettore è stato necessario determinare delle variabili proxy rappresentative, che permettono di disaggregare a livello comunale i dati provinciali degli inventari energetico - emissivi. Inizialmente è stata eseguita una raccolta dei dati statistici e di contesto disponibili a livello regionale, provinciale e comunale. Per alcuni dei dati raccolti non è stato possibile disporre dei valori relativi all'anno di riferimento dell'inventario provinciali oggetto di disaggregazione; sono state quindi fatte assunzioni in modo tale da disporre di un set di dati omogeneo. Infatti, si è ritenuto opportuno considerare alcuni dati ISTAT al 2011, non disponendo di ulteriori informazioni circa eventuali dinamiche in atto nel periodo osservato. A partire dai dati sopra citati sono stati definiti per ciascun settore e vettore gli indicatori più rappresentativi, come riportato nella tabella successiva.

tabella 2-2 _ indicatori considerati per la disaggregazione dei consumi energetici e delle emissioni dei diversi settori/vettori (fonte: ACI, ISTAT – nostra elaborazione)

INI	INDICATORI CONSIDERATI PER IL PROCESSO DI DISAGGREGAZIONE TOP-DOWN								
			SETTORE						
VETTORE	Residenziale	Terziario	Industria non ETS	Agricoltura	Trasporto urbano				
Energia elettrica	Numero di abitanti		Numero di addetti delle		Numero di veicoli				
Altri vettori	Superficie delle Nume abitazioni di	Numero di imprese	attività manifatturiere del settore costruzioni e del settore estrazione	Superficie agricola utilizzata					

2.1.4 La stesura del piano d'azione

I risultati del BEI comunale, che comporta l'individuazione dei punti di forza e dei punti di debolezza dell'autorità locale nel campo della gestione energetica e del clima, nonché delle opportunità e delle minacce nel contesto comunale, rappresenta il punto di partenza per la definizione delle priorità e delle misure da intraprendere nell'ambito del Piano d'Azione.

Per quanto riguarda l'**obiettivo del PAESC**, ossia la riduzione delle emissioni comunali da conseguire entro il 2030, le Linee Guida del JRC stabiliscono che è possibile determinarlo in termini assoluti o procapite (quest'ultima opzione è fortemente consigliata per i comuni in cui si osserva una significativa evoluzione demografica e obbligatoria in caso di decrescita) come

percentuale rispetto alle emissioni totali riportate nel BEI: tale percentuale non può essere inferiore al 40%. Inoltre, l'AC ha la possibilità di escludere dall'analisi il settore produttivo, in relazione alla capacità della stessa di promuovere azioni di riduzione dei consumi energetici in tale settore. Infine, l'obiettivo di riduzione è stato determinato tenendo conto anche degli impatti emissivi legati alle previsioni di aumento della popolazione e di espansioni emissive, in modo che le azioni del PAESC possano intervenire efficacemente anche a contenere tali emissioni addizionali e garantire che la riduzione percentuale delle emissioni di CO₂ fissata rispetto al 2005 possa essere raggiunta anche rispetto alle potenziali emissioni aggiuntive al 2030.

Il PAESC consente di tradurre la vision in provvedimenti reali che permettano di raggiungere l'obiettivo prefissato, stabilendo scadenze e budget per ciascuno degli interventi previsti e diventando così un punto di riferimento durante il processo di attuazione e monitoraggio.

Nello specifico, il modulo del JRC, che ogni firmatario è tenuto a compilare, nella sezione dedicata al PAESC richiede di indicare per ciascuna misura:

- il dipartimento, persona o società responsabile dell'attuazione dell'intervento, incarico che potrebbe essere anche assegnato a terzi quali società di servizi pubblici/società di servizi energetici (ESCo) o agenzie energetiche locali;
- ≥ la data di inizio e fine dell'azione/misura per distinguere le azioni a breve/medio termine dalle misure a lungo termine;
- ☑ il risparmio energetico previsto in MWh;
- la riduzione delle emissioni di CO₂ in tonnellate per anno (t/a).

2.1.5 La valutazione dei singoli interventi

Il PAESC comprende le azioni avviate a livello locale nell'ambito di competenza comunale; pertanto i firmatari hanno la possibilità di promuovere iniziative agendo sia in veste di consumatori diretti (per quanto riguarda il comparto pubblico) sia come pianificatori, autorità di regolamentazione, consulenti, incentivatori e, eventualmente, produttori o fornitori nei confronti dei settori privati. La valutazione in termini numerici delle singole azioni proposte nel PAESC è stata condotta seguendo diverse metodologie a seconda del settore, proprio a causa delle diverse modalità di azione previste per i firmatari.

In particolare, per quanto riguarda il comparto pubblico (edifici pubblici, illuminazione pubblica e parco veicolare) è stata svolta un'analisi puntuale del patrimonio attuale attraverso un'attività di raccolta dati tramite l'AC. Nel caso in cui si disponga di valutazioni numeriche di interventi già programmati dall'AC (ad esempio Audit Energetici di dettaglio degli edifici comunali oppure

interventi previsti dal PRIC nel caso di interventi sul parco lampade comunale) si assumeranno direttamente tali previsioni quantitative.

Relativamente al settore privato, sono stati adottati due approcci differenti. L'AC ha, infatti, la possibilità di agire nel settore residenziale e nel settore dei trasporti privati e commerciali prevalentemente attraverso attività di promozione (organizzazione di incontri formativi di sensibilizzazione, apertura di uno Sportello Energia presso gli uffici comunali, volantinaggio, attività didattiche presso le scuole, etc.) il cui effetto sarà stimato rispetto al tasso di sostituzione naturale delle tecnologie, ricavato dalla durata media delle stesse. In alcuni casi, si è ritenuto opportuno includere azioni che si verificano 'naturalmente', senza la necessità di un'attività di promozione da parte del Comune: si pensi ad esempio alla sostituzione delle autovetture, intervento che l'AC può eventualmente intensificare o indirizzare verso specifici orientamenti ma che si verifica anche senza alcuna attività di promozione da parte del Comune. Per quanto riguarda tali interventi si è quindi deciso di valutarli ugualmente tenendo però conto dell'inerzia legata a particolari condizioni economiche di crisi che possono aver disincentivato la sostituzione standard.

Il secondo tipo di approccio riguarda in particolare i settori terziario e produttivo, per i quali, non essendo possibile effettuare valutazioni valide sulla base dei dati statistici disponibili, si è cercato di individuare azioni specifiche attraverso il coinvolgimento degli stakeholder locali, effettuando valutazioni puntuali (come quanto fatto per i settori pubblici). Nel caso di insuccesso in tale operazione si è invece assunta una percentuale di riduzione minima, basata sulle caratteristiche delle attività del terziario e produttive presenti nel contesto comunale, da raggiungere con interventi di diverso tipo, rimandando agli eventuali successivi incontri con gli stakeholder per la definizione di misure ad hoc.

2.1.6 La definizione delle azioni di intervento

La definizione delle misure di intervento sarà effettuata in due fasi:

Nella prima fase è stato chiesto all'AC di compilare un questionario con riportate le azioni fattibili nel contesto in cui assegnare alle misure proposte:

- a. Una sezione dedicata al settore pubblico in cui l'Amministrazione Comunale esprime un punteggio da o a 4 che rappresenta il grado di interesse;
- b. Un'altra dedicata al settore privato in cui l'Amministrazione Comunale indica un punteggio per definire il grado di sensibilità e dell'interesse al tema.

Le diverse azioni saranno quindi definite in termini quantitativi sulla base di tali punteggi e del contesto locale attraverso il software CO₂₀ suddividendo le azioni in provvedimenti già avviati o avviati a breve (da oggi al 2020) e lungo termine (dal 2020 al 2030). In tal modo sarà possibile definire un potenziale massimo di riduzione delle emissioni e individuare le azioni strategiche all'interno dei diversi PAESC.

Nella seconda fase, i risultati della fase preliminare saranno quindi sottoposti all'AC e rielaborati tenendo conto delle osservazioni presentate e delle criticità emerse analizzando in maniera più

approfondita i settori del comparto pubblico, arrivando alla stesura delle schede delle singole azioni. Per quanto riguarda i **settori privati**, si manterrà una linea condivisa da tutti i Comuni. Le schede relative ai settori del **comparto pubblico** sono state maggiormente approfondite a livello comunale, individuando come soggetti responsabili dell'attuazione e del monitoraggio di tali azioni gli Uffici tecnici comunali.

2.2 RACCOLTA DATI

Accanto all'analisi della banca dati regionale, l'AC è stata coinvolta direttamente nella raccolta dei materiali disponibili relativi a:

- > patrimonio immobiliare pubblico,
- illuminazione pubblica,
- y parco veicoli comunale,
- diffusione delle fonti energetiche rinnovabili sul territorio comunale,
- v consumi energetici rilevati dai distributori locali di energia,
- raccolta di informazioni (strumenti pianificatori, bibliografie varie,...) circa i rischi idrici e boschivi che principalmente si relazionano al tema dei cambiamenti climatici.

I dati indicati come non pervenuti (NP) sono quelli che il comune non è riuscito a recuperare e per i quali la stessa Amministrazione provvederà a colmare successivamente durante i Report di Monitoraggi.

In particolare, per quanto riguarda il patrimonio immobiliare pubblico, sono stati richiesti e analizzati i consumi elettrici e termici degli edifici. Il quadro complessivo del settore illuminazione pubblica è stato invece ricostruito sulla base del Piano di Illuminazione Pubblica, del parco lampade del Comune e delle bollette relative ai consumi elettrici specifici dell'illuminazione pubblica, grazie al lavoro di raccolta in essere per il progetto di efficientamento condiviso degli stessi. Relativamente al parco veicoli comunale, sono stati utilizzati i dati di consumo registrati dall'AC stessa. Per supportare l'AC nella raccolta dati è stato appositamente predisposto un foglio Excel, utilizzato poi come punto di partenza nell'elaborazione degli inventari.

La caratterizzazione degli impianti di produzione di energia elettrica presenti sul territorio è stata definita richiedendo informazioni in merito alla potenza, ai consumi e alla produzione totale di energia degli impianti presenti, includendo negli inventari solamente gli impianti che soddisfano i requisiti definiti nel diagramma decisionale presente nelle Linee Guida del JRC.

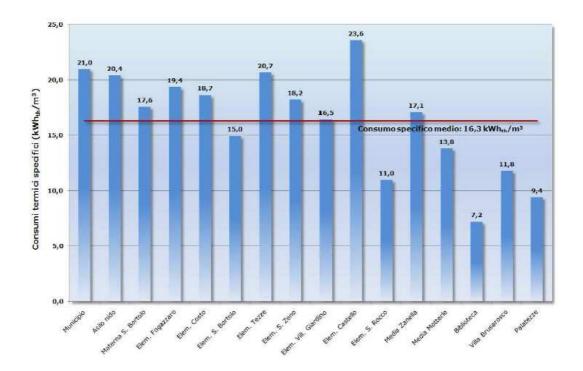
Infine, l'AC ha richiesto ai distributori locali di energia elettrica e di gas naturale i dati relativi ai consumi complessivi rilevati sul territorio comunale, attraverso i quali sono stati validati ed eventualmente integrati i dati forniti dalla banca dati regionale SIRENA20.

2.3 ANALISI DEI CONSUMI

2.3.1 Gli edifici comunali

Per il calcolo dei consumi imputabili al patrimonio immobiliare del Comune, per la stesura di questi inventari energetico-emissivi vengono considerate le 23 utenze elencate nella tabella successiva che rappresentano gli edifici più energivori del patrimonio comunale. L'AC ha fornito i dati di consumo per il comparto termico ed elettrico.

Tabella 2-3: consumi di gas naturale e energia elettrica degli edifici pubblici di Arzignano per l'anno 2015 (fonte: dati comunali)


CONSUMI ENERGETICI DEGLI EDIFICI PUBBLICI						
ID	EDIFICI	GAS NATURALE [Sm³]		ENERGIA ELETTRICA [kWh]		
		2005	2015	2005	2015	
01	Municipio (con condizionamento)		26'159		115'162	
02	Asilo nido		439		15'208	
03	Materna S. Bortolo		4'703		15'209	
04	Elementare Fogazzaro e palestre Zanella e Fogazzaro		45'353		51'516	
05	Elementare Costo		2'588		5'726	
06	Elementare S. Bortolo		23'596		31'304	
07	Elementare Tezze		13'898		12'519	
08	Elementare S. Zeno		6'459		8'177	
09	Elementare Villaggio Giardino		10'863		10'230	
10	Elementare Castello		5'668		7'953	
11	Elementare S. Rocco		2'403		21'873	
12	Media Zanella		29'271		28'313	
13	Media Motterle		997		67'396	
14	Biblioteca civica		6'520		136'962	
15	Villa Brusarosco		4'635		14'629	
16	Palatezze		20'027		72'739	
17	Magazzini comunali		5'801		18'947	
18	Stadio Dal Molin (spogliatoi)		6'288		18'306	
19	Campo sportivo Costo, Tezze, Villaggio Giardino, S. Bortolo		25'090		38'070	
20	Ex scuola Restena		5'590		9'884	
21	Comando Polizia Locale		100'734		17'453	
22	Scuola Materna Costo		3'081		52'445	
23	Ludoteca S.Rocco		4'331		3'385	
TOTAL	TOTALE		362'116	-	773'406	
TOTALE [MWh]		2'821	3'453	1'153	773	

Il Comune nel 2007 ha fatto eseguire uno studio per affrontare le problematiche relative ai consumi di energia elettrica e termica con lo scopo di pianificare degli interventi tesi alla riqualificazione energetica degli edifici con un conseguente risparmio energetico ed economico oltre i benefici ambientali in termini di emissioni evitate. Per 9 dei 23 edifici sono state elaborate delle schede specifiche. Tra il 2008 e il 2015 sono stati installati pannelli fotovoltaici sul Magazzino Comunale di via Sesta Strada, sulla Scuola Materna di Costo, sulla Scuola Primaria di San Bortolo, sulla Scuola Primaria Zanella, sulla Scuola Materna San Bortolo, sulla Scuola Primaria di Villaggio Giardino e su quella di San Zeno per un totale di circa 70 kW.

Figura 2-1: Consumi specifici per il riscaldamento riferiti ai consumi reali di gas metano (fonte: Definizione dello stato di fatto, sito del Comune di Arzignano)

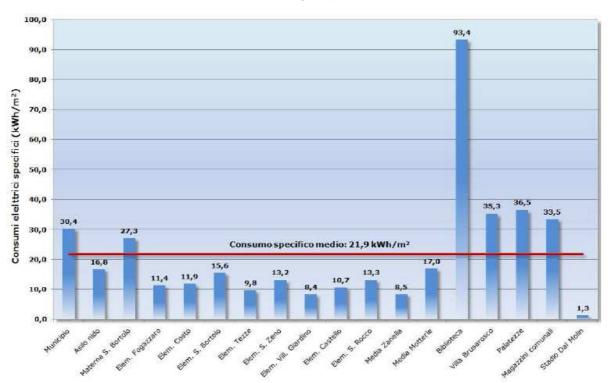


Figura 2-2: Consumi elettrici specifici degli edifici comunali (fonte: Definizione dello stato di fatto, sito del Comune di Arzignano)

2.3.2 L'illuminazione pubblica

I dati dei consumi relativi all'illuminazione pubblica riguardano esclusivamente il consumo di energia elettrica. I dati di consumo imputabili all'illuminazione pubblica per il 2005 sono stati forniti dall'AC che li ha pubblicati sul sito internet comunale nella sezione dedicata al PAESC, per i consumi al 2015 sono stati utilizzati i dati forniti da E-distribuzione per gli anni 2012-2017 e il Piano dell'Illuminazione per il Contenimento dell'Inquinamento Luminoso. Nel PICIL è presente un censimento delle lampade presenti sul territorio comunale divise per tipologia, i consumi per l'anno 2011 e delle ipotesi di intervento per l'adeguamento alla legge Regionale Veneto 7 agosto 2009 n. 17.

A partire dai dati disponibili, è stato calcolato il consumo procapite relativo all'illuminazione pubblica per il 2015. In Tabella 2-4 si riportano i dati disponibili, suddividendo i corpi illuminanti per tipologia e potenza.

Tabella 2-4: numero di corpi illuminanti per potenza e tipologia installati nel comune di Arzignano nel 2011 (fonte: PICIL nostra elaborazione)

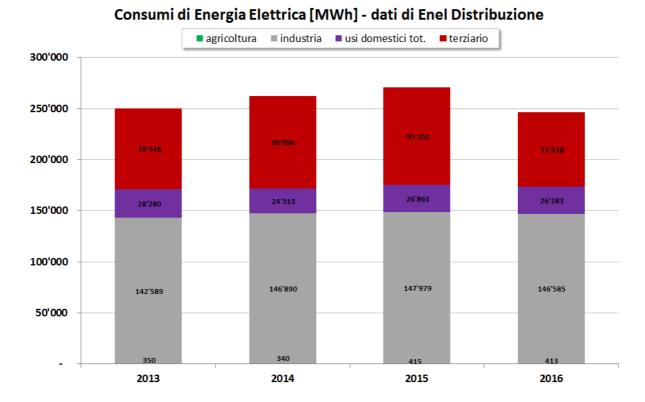
PARCO LAMPADE ARZIGNANO						
Tipologia di lampada	Numero di lampade	Potenza lampada [W]				
Vapori di Mercurio (VM)	1'342	125				
vapori di Mercurio (vivi)	6	250				
	348	70				
	920	100				
Sodio alta pressione (SAP)	909	150				
	215	250				
	11	400				
	21	70				
Alogenuri metallici (JM)	96	150				
Alogenuli metamu (Jivi)	16	250				
	8	400				
	140	9				
Fluoroscopti /FL\	207	18				
Fluorescenti (FL)	84	36				
	5	58				

Il parco lampade è formato in totale da 4'328 lampade, il 55% delle quali sono a vapori di sodio, il 31% a vapori di mercurio, il 10% sono lampade a fluorescenza ed infine il 3% ad alogenuri metallici. Il consumo procapite al 2015 è pari a 80 kWh/ab mentre il consumo per corpo illuminante è pari a 467 kWh/corpo illuminante. Sono state sostituite 144 lampade a vapori di sodio e a vapori di mercurio con lampade a LED.

2.3.3 Il parco veicoli comunale

I dati relativi al consumo imputabile al parco veicoli comunale è presente sulla sezione del sito internet comunale dedicata al PAESC, i consumi imputabili a questo settore sono restituiti come litri carburante consumato nel 2005 e quindi in consumi stimati in MWh che si attestano a 423.89 MWh di gasolio e 463.85 MWh di benzina, il carburante prevalente.

2.3.4 I consumi elettrici rilevati dal distributore

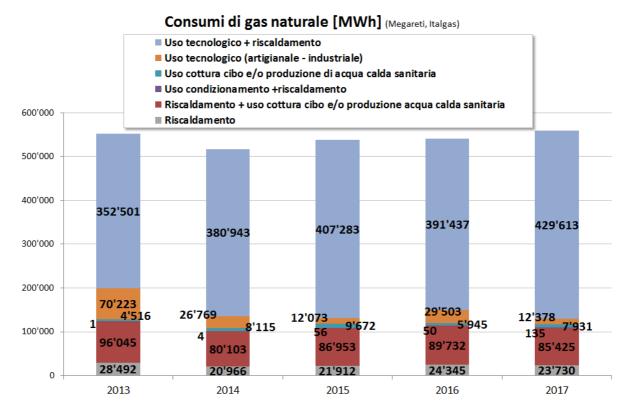

Per la redazione di questo documento l'AC ha fatto richiesta dei dati di consumo elettrico del territorio comunale ed E-Distribuzione che li ha forniti per gli anni dal 2013 al 2016 divisi per settore, è quindi possibile fare un confronto con i dati disaggregati per la costruzione dell'inventario al 2015. Dal grafico emerge che i il settore più energivoro per quanto riguarda l'energia elettrica è quello dell'industria non ETS che consuma in media una quota pari al 57% dei consumi totali, Il settore terziario consuma in media il 33% dell'energia elettrica comunale, il residenziale il 10%. Una quota irrisoria, inferiore all'1% è invece imputabili all'agricoltura. I consumi

dei settori industria non ETS ed agricoltura sono in aumento nell'intervallo di tempo considerato (+3% e +18% rispettivamente), i consumi dei settori terziario e residenziale sono entrambi in calo di circa il 7%.

figura 2-3 _ consumi di energia elettrica del comune di Arzignano dal 2013 al 2016, divisi per settore, espressi in termini percentuali (E- Distribuzione)

In generale i consumi totali si possono sono in leggero calo se si confrontano gli anni 2013 e 2016, aumentano invece nei due anni centrali per ridiscendere tra il 2015 e il 2016.

Per il BEI al 2005 sono stati utilizzati i dati desunti dalla disaggregazione al 2005 e quindi i dati diffusi direttamente da Terna S.p.a..


2.3.5 I consumi termici rilevati dal distributore

Anche per i consumi di gas naturale sono stati messi a disposizione dai distributori i dati relativi agli anni 2012 – 2017. Sul territorio comunale sono presenti due distributori: Megareti S.p.a. e Italgas S.p.a., i consumi dei due sono stati sommati per ricavare il consumo totale. I consumi sono stati forniti per categoria d'uso e sono riportati nel grafico a seguire.

figura 2-4_ consumi di gas naturale del comune di Arzignano dal 2012 al 2017, divisi per categoria d'uso, espressi in MWh (nostra elaborazione da dati Megareti S.p.a e Italgas S.p.a.)

I consumi di gas imputabili alla categoria T2, Uso tecnologico + riscaldamento a cui viene attribuito in media il 72% del consumo totale, la seconda categoria più rappresentativa è la C3, Riscaldamento + uso cottura cibi e/o produzione acqua calda sanitaria, il 16% in media dei consumi totali. La categoria C5, Uso condizionamento + riscaldamento è il meno rappresentativo tra le categorie presenti.

2.4 CONFRONTO TRA I DATI DISAGGREGATI E I DATI REPERITI DAI DISTRIBUTORI ENERGETICI

2.4.1 Il confronto dei consumi di energia elettrica

In generale i dati desunti dall'inventario 2015 sono inferiori del 10% rispetto a quelli forniti da E-Distribuzione, il settore che fa registrare lo scostamento superiore è il terziario con il 59%, valore che in termini assoluti si ridimensiona. Si è scelto quindi di utilizzare i consumi della disaggregazione del 2015 che utilizza i dati Terna S.p.a..

figura 2-5 _ confronto dei dati di consumo di energia elettrica disponibili per il comune di Arzignano relativi al 2015 (E-Distribuzione, Inventario 2015)

Confronto dati Enel Distribuzione - disaggregazione 2015 [MWh] ■ Enel Disaggregazione 148'393 Settore produttivo 175'927 95'350 Edifici, attrezzature/impianti del terziario 39'304 26'861 Edifici residenziali 27'684 Consumo totale ENEL 270'604 Consumo totale -10% 242'914 disaggregazione

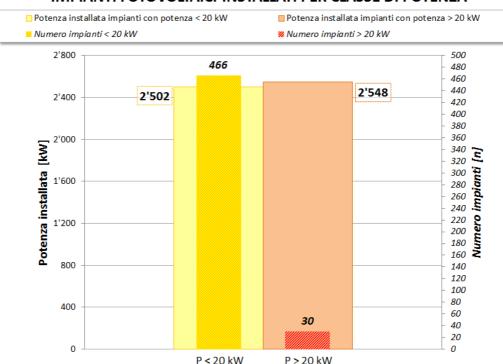
2.4.2 Il confronto dei consumi di gas naturale

Per poter effettuare un confronto tra i dati degli inventari e quelli dei distributori è necessario avere una divisione per settore in modo da valutarne la differenza come già fatto per i consumi elettrici. In base alle informazioni a disposizione non è possibile dedurre con certezza a quale settore appartengano i consumi forniti (se residenziale, terziario o produttivo) e pertanto tale confronto non è stato effettuato. È possibile però effettuare una comparazione tra i consumi complessivi di gas al 2015: i consumi di gas dell'inventario 2015 sono pari a 311'548.3 MWh; dal confronto con i valori forniti dal distributore si ricava uno scostamento complessivo notevole, vicino al 60%. Si è quindi deciso di utilizzare i dati forniti dal distributore per gli inventari al 2005 e al 2015.

2.5 ANALISI DELLA PRODUZIONE LOCALE DI ENERGIA

2.5.1 La produzione locale di energia elettrica

Nella figure seguente si riporta una sintesi dei dati ricavati dalla banca dati nazionale ATLAIMPIANTI sull'intero territorio comunale, il sistema informativo geografico che rappresenta l'atlante degli impianti alimentati ad energia rinnovabile, in questo caso impianti fotovoltaici, entrati in esercizio. Esso fornisce il numero, la potenza e degli impianti fotovoltaici installati nei



comuni. Nel 2005, anno di riferimento del BEI, non erano presenti impianti fotovoltaici sul territorio comunale. Lo sviluppo e la diffusione progressiva degli impianti avviene dal 2007 in poi anche grazie al sistema di incentivazione statale.

Dalla banca dati risultano installati, a settembre 2018, 496 impianti per la maggior parte di piccole dimensioni come si può vedere dal grafico sottostante. Circa la metà della potenza installata è prodotta dai 30 impianti con potenza superiore ai 20 kW. Confrontando il numero di impianti di piccole dimensioni presenti sul territorio comunale (466) con il numero degli edifici presenti (5'736).

Figura 2-6: numero di impianti e potenza installata per classe di potenza, aggiornamento a settembre 2018 (fonte: nostra elaborazione da ATLAIMPIANTI)

IMPIANTI FOTOVOLTAICI INSTALLATI PER CLASSE DI POTENZA

Con i dati disponibili è stato possibile calcolare che al 2015 la produzione potenziale degli impianti installati è pari a 6'475 MWh, pari al 23% dei consumi di energia elettrica del settore residenziale.

Le informazioni sopra riportate sono state utilizzate per il calcolo del fattore di emissione locale di CO₂ per l'energia elettrica secondo le Linee Guida del JRC.

2.6 BEI: L'INVENTARIO AL 2005

2.6.1 I consumi energetici finali

La tabella seguente, esito delle elaborazioni di cui ai paragrafi precedenti, è estratta direttamente dal template del JRC e riporta i dati di consumo per settore e per vettore di Arzignano.

Tabella 2-5: consumi energetici annui per settore e per vettore (2005-BEI) nel Comune di Arzignano (fonte: disaggregazione ISPRA, dati comunali – nostra elaborazione)¹

						CONSU	MI FINAL	I DI E	NERGIA	[MV	/h]					
	trica	/ raffresc.		Combustibili fossili Energie rinnovabili												
Categoria	Energia elettrica	Riscald. / raf	Gas naturale	GPL	Olio combustibile	Gasolio	Benzina	Lignite	Carbone	Altri	Olio	Bio carburanti	Altre biomasse	Solare termico	Geotermia	TOTALE
EDIFICI, ATTREZZATURE/IMPIANTI E INDUSTRIE:																
Edifici, attrezzature/impianti comunali	1'153	0	2'821	0	0	0	0	0	0	0	0	0	0	0	0	3'975
Edifici, attrezzature/impianti del terziario (non comunali)	29'142	0	31'778	3'377	34	2'060	0	0	0	0	0	0	14'505	0	0	80'896
Edifici residenziali	26'593	0	109'562	7'313	0	8'378	0	0	1	0	0	0	8'970	0	0	160'817
Illuminazione pubblica comunale	2'025	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2'025
Settore produttivo	189'834	0	465'511	2'439	22'574	9'726	0	0	21'607	0	0	0	341	0	0	712'032
Settore agricolo	662	0	1'064	118	0	3'499	0	0	0	0	0	0	0	0	0	5'344
Subtotale edifici, attrezzature/impianti e industrie	249'409	0	610'737	13'247	22'608	23'664	0	0	21'608	0	0	0	23'816	0	0	965'089
TRASPORTI:																
Parco veicoli comunale	0	0	0	6	0	424	464	0	0	0	0	0	0	0	0	894
Trasporti pubblici	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Trasporti privati e commerciali	0	0	467	2'789	0	23'313	31'464	0	0	0	0	0	0	0	0	58'034
Subtotale trasporti	0	0	467	2'795	0	23'737	31'928	0	0	0	0	0	0	0	0	58'928
TOTALE	249'409	0	611'204	16'042	22'608	47'401	31'928	0	21'608	0	0	0	23'816	0	0	1'024'016

Dall'analisi della distribuzione dei consumi energetici per settore (Figura 2-7), il settore produttivo (industria non ETS) risulta essere quello a cui è associata la quota maggiore di consumi, circa il 70%, il residenziale, al secondo posto, è responsabile di una percentuale decisamente più ridotta di consumi: il 16% circa. I consumi del settore terziario sono pari a circa l'8% dei consumi totali, quelli del settore trasporti al 6% circa. Il consumo legato a servizi pubblici (edifici comunali, parco veicoli comunale ed illuminazione pubblica) copre lo 0.7% dei consumi totali di Arzignano. Anche il settore agricolo è responsabile di una quota di consumi inferiore all'1%.

Nel caso di esclusione del settore produttivo, il settore predominante in termini di consumi diventa il residenziale, a cui si associa una quota pari a circa il 52% dei consumi complessivi. Il consumo energetico diretto attribuibile al Comune è in questo caso pari a circa il 2.2%. Si ricorda, infatti, che è data facoltà alle Amministrazioni Comunali di scegliere l'inclusione o meno del settore produttivo, soprattutto in relazione alla capacità delle stesse di promuovere azioni di riduzione dei consumi energetici in tale ambito.

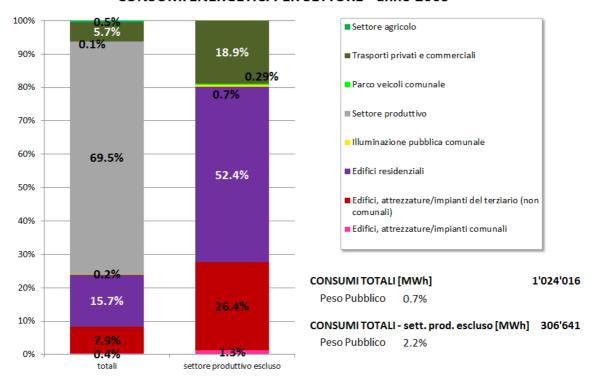

¹ Per brevità nelle didascalie successive si riporta come fonte degli inventari solamente la banca dati SIRENA20, considerando tutte le altre fonti incluse nella dicitura 'nostra elaborazione'. Si evidenzia che il dato di consumo dell'illuminazione pubblica è carente di una parte del parco in convenzione CONSIP.

Figura 2-7: distribuzione percentuale dei consumi energetici annui per settore a Arzignano considerati nel BEI: a sinistra si considerano tutti i settori, a destra si riportano i consumi privi del settore produttivo (fonte: disaggregazione ISPRA – nostra elaborazione)

CONSUMI ENERGETICI PER SETTORE - anno 2005

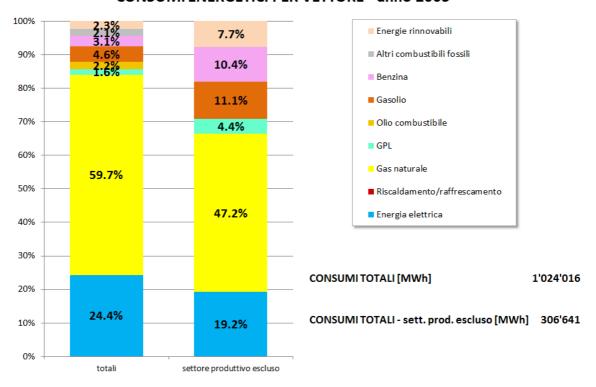

Nella figura successiva si mostra la distribuzione percentuale dei consumi energetici per l'anno 2005 ad Arzignano per vettore. Dall'analisi effettuata si può notare come più della metà dei consumi sia da attribuire al gas naturale (59%), segue l'energia elettrica con il 24% circa, gli altri vettori presi singolarmente non coprano una quota di consumi significativa. Escludendo il settore produttivo, si osserva che il gas naturale si conferma il vettore più rappresentativo arrivando a rappresentare il 47% del totale. I consumi di energia elettrica scendono al 19%.

Figura 2-8: distribuzione percentuale dei consumi energetici annui per vettore di Arzignano considerati nel BEI: a sinistra i vettori dei consumi considerando tutti i settori; a destra i vettori dei consumi privi del settore produttivo (fonte:

SIRENA20- nostra elaborazione)

CONSUMI ENERGETICI PER VETTORE - anno 2005

Nella tabella seguente vengono riportati i consumi energetici suddivisi per settori al 2005, sia in valore assoluto che procapite, relativi a Arzignano: i valori procapite comunali sono confrontati con quelli regionali veneti.

Tabella 2-6: consumi energetici annui per settore (2005-BEI) a Arzignano assoluti e procapite confrontati con quelli veneti (fonte: PERFER Regione Veneto— nostra elaborazione)

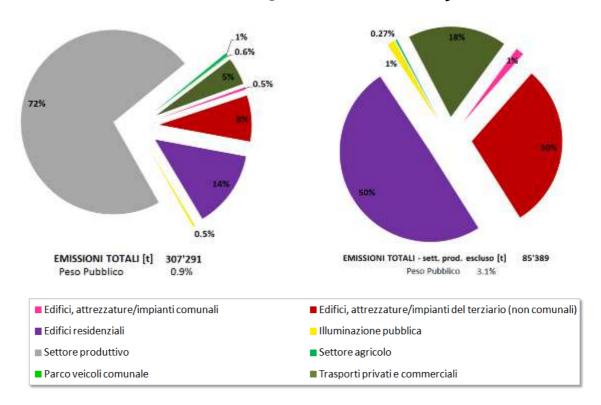
CONSUMI ENERGETICI COMUNALI P	ROCAPITE e CONFRO	ONTO CON VALO	RI VENETI (2005)
SETTORE	CONSUMI COMUNALI ANNUI [MWh]	CONSUMI COMUNALI PROCAPITE [MWh/ab]	CONSUMI VENETI PROCAPITE [MWh/ab]
Edifici, attrezzature/impianti comunali	3'975	0.16	
Edifici, attrezzature/impianti del terziario (non comunali)	80'896	3.22	
Illuminazione pubblica comunale	2'025	0.08	0.09
TERZIARIO	86'896	3.46	3.10
RESIDENZIALE	160'817	6.40	6.73
SETTORE PRODUTTIVO	712'032	28.32	0.01
SETTORE AGRICOLO	5'344	0.21	
Parco veicoli comunale	894	0.04	
Trasporti non pubblico	58'034	2.31	
TRASPORTO	58'928	2.34	8.02
TOTALE	1'024'016	40.52	17.86

Si può notare che il consumo procapite totale del Comune sia superiore a quello veneto di più del doppio; questa differenza in particolare è imputabile al settore produttivo ha consumi decisamente superiori rispetto alla media regionale.

2.6.2 Le emissioni totali

La situazione precedentemente descritta si ritrova in linea di massima replicata anche nella distribuzione delle emissioni annue (2005) di CO₂. Come spiegato nel paragrafo sulla metodologia, le emissioni di CO₂ di Arzignano sono calcolate come prodotto dei consumi dei diversi vettori energetici per i corrispondenti fattori di emissione (tonnellate di emissione per MWh di energia consumata). La tabella seguente è estratta direttamente dal template di CoMo e riporta le emissioni di CO₂ stimate per il Comune di Arzignano, suddivise per settore e per vettore (BEI 2005).

Tabella 2-7: emissioni annue di CO₂ per settore e per vettore (2005-BEI) a Arzignano (fonte: disaggregazione – nostra elaborazione)


		EMISSIONI DI CO ₂ [t] / EMISSIONI DI CO ₂ EQUIVALENTI [t]														
	rica	Combustipili fossili									Energ	gie rinn	ovabili			
Categoria	Energia elettrica	Riscald. / raff	Gas naturale	GPL	Olio	Gasolio	Benzina	Lignite	Carbone	Altri	Olio	Bio carburanti	Altre biomasse	Solare termico	Geotermia	Totale
EDIFICI, ATTREZZATURE/IMPIANTI E INDUSTRIE:																
Edifici, attrezzature/impianti comunali	675	0	570	0	0	0	0	0	0	0	0	0	0	0	0	1'245
Edifici, attrezzature/impianti del terziario (non comunali)	17'048	0	6'419	767	9	550	0	0	0	0	0	0	0	0	0	24'793
Edifici residenziali	15'557	0	22'132	1'660	0	2'237	0	0	0	0	0	0	0	0	0	41'586
Illuminazione pubblica comunale	1'185	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1'185
Settore produttivo	111'053	0	94'033	554	6'298	2'597	0	0	7'368	0	0	0	0	0	0	221'903
Settore agricolo	387	0	215	27	0	934	0	0	0	0	0	0	0	0	0	1'563
Subtotale edifici, attrezzature/impianti e industrie	145'905	0	123'369	3'007	6'308	6'318	0	0	7'368	0	0	0	0	0	0	292'275
Parco veicoli comunale	0	0	0	1	0	113	115	0	0	0	0	0	0	0	0	230
Trasporti pubblici	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Trasporti privati e commerciali	0	0	94	633	0	6'225	7'835	0	0	0	0	0	0	0	0	14'787
Subtotale trasporti	0	0	94	635	0	6'338	7'950	0	0	0	0	0	0	0	0	15'017
TOTALE	145'905	0	123'463	3'642	6'308	12'656	7'950	0	7'368	0	0	0	0	0	0	307'291

Dall'analisi della stima delle emissioni di CO₂ (Figura 2-9 a sinistra) appare evidente come la maggior parte delle emissioni sia dovuta al settore produttivo, responsabile per circa il 72% delle emissioni totali, gli altri settori fanno registrare percentuali decisamente ridotte: al residenziale si associa una quota emissiva pari a circa al 14%, le emissioni del terziario si attestano all'8%. Le emissioni legate all'attività agricola sono pari a circa l'1% del totale. La quota di emissioni relativa alla Pubblica Amministrazione è pari allo 0.9% delle emissioni totali del Arzignano. In Figura 2-9 a destra sono rappresentate le emissioni comunali ottenute escludendo dall'analisi i consumi il settore produttivo. Si osserva che al primo posto si attesta il residenziale con il 50%, seguito dal terziario privato e commerciale (30%). In questo caso, le emissioni direttamente riconducibili a servizi pubblici sono pari circa al 3.1% del totale.

Figura 2-9: distribuzione percentuale delle emissioni annue per settore di Arzignano (2005-BEI): a sinistra si considerano tutti i settori, a destra si riportano le emissioni prive del settore produttivo (fonte: disaggregazione – nostra elaborazione)

EMISSIONI di CO2 PER SETTORE - anno 2005

Dall'analisi delle emissioni totali per vettore (Figura 2-10) si può notare come, considerando il settore produttivo, la maggior parte delle emissioni sia dovuta ai consumi di energia elettrica (48%), seguiti dal gas naturale (40%). Nel caso in cui si escluda il settore produttivo, la situazione non cambia in modo significativo, la politica di riduzione delle emissioni dovrà passare attraverso una riduzione significativa dei consumi di energia elettrica 41% del totale e di gas naturale (35% circa), rilevanti anche le quote di gasolio (11%) e di benzina (10%).

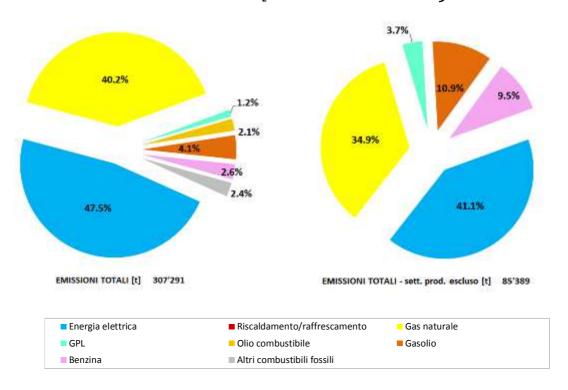

Per ciò che concerne le emissioni del settore agricolo, oltre a quelle direttamente imputabili all'uso di combustibili, in particolare di gasolio, sono da menzionare quelle legate all'uso del suolo e all'attività di zootecnia.

Figura 2-10: distribuzione percentuale delle emissioni annue per vettore di Arzignano (2005-BEI): a sinistra si considerano tutti i settori, a destra si riportano le emissioni prive del settore produttivo (fonte: disaggregazione – nostra elaborazione)

EMISSIONI di CO2 PER VETTORE - anno 2005

3. ANALISI DEI RISCHI E DELLE VULNERABILITA'

3.1 ELEMENTI RILEVANTI A LIVELLO SOVRACOMUNALE

Le sfide del cambiamento climatico e dell'efficientamento energetico nelle aree urbanizzate impongono di ripensare a come la pianificazione possa contribuire a contrastare il consumo di energia e le conseguenti emissioni di gas serra.

Nel corso dell'ultimi decenni è stato ampiamente riconosciuto che le emissioni di gas serra derivanti dalle attività umane influendo sulla composizione chimica dell'atmosfera stanno conseguentemente modificando il clima, sia a livello globale che regionale. Per contrastare i mutamenti del clima sono necessarie due principali approcci. Il primo consiste nell'adozione di misure volte a ridurre le emissioni di gas serra (e quindi la causa del cambiamento climatico), i cosiddetti interventi di mitigazione. La seconda consiste nell'intervenire per ridurre la vulnerabilità dei sistemi naturali e socioeconomici, e aumentare la loro resilienza di fronte agli inevitabili impatti di un clima cambiante, cioè, interventi di adattamento (ovvero sugli effetti del cambiamento climatico).

In questo capitolo si analizza il tema dell'adattamento. Gli impatti e le vulnerabilità sono specifici per ogni territorio e perciò le strategie di adattamento si mostrano tanto più efficienti quanto più specifica è la scala spaziale di applicazione.

La Regione Veneto, a causa della sua singolare posizione geografica e delle sue caratteristiche orografiche, territoriali e socio-economiche, presenta un'elevata vulnerabilità agli impatti del cambiamento climatico. Le politiche di adattamento sono strettamente connesse alle politiche di mitigazione, poiché l'entità del cambiamento o alterazione delle diverse variabili climatiche, e quindi il magnitudo degli impatti associati, sono una funzione diretta dei livelli di concentrazione di gas serra in atmosfera.

Nel PNACC (Piano Nazionale di Adeguamento ai Cambiamenti Climatici) del 2017 descrive nel modo seguente le caratteristiche delle macroregioni in cui è divisa la penisola e quindi la Regione Veneto:

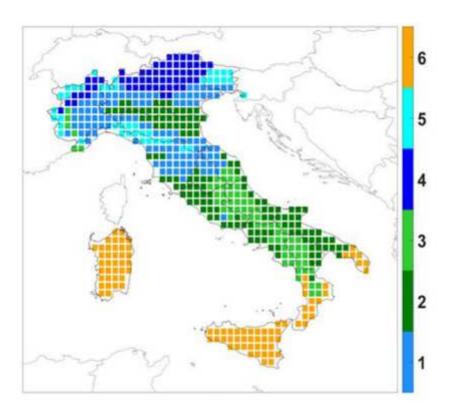


Figura 3-1: Le macroregioni climatiche presenti nel PNACC (PNACC 2018)

Figura 3-2: Valori medi e deviazione standard degli indicatori per ciascuna macroregione individuata (PNACC 2017)

	Temperatura media annuale – Tmean (°C)	Giorni con precipitacioni intense – R20 (giorni/anno)	Frost days – FD (giorni/anno)	Summer days – SU9Sp (giorni/anno)	Precipitazioni invernali cumulate WP [mm]	Precipitazioni cumulate estive – SP (mm)	95° percentile precipitazioni – R95p (mm)	Consecutive dry days – CDD (giorni)	
	2	ଲ୍ଲ	*		ক্র	8	00	-j o -	
Macroregione 1 Presipi e Appenieno settentronale	13 (±0.6)	10 (£2)	51 (±13)	34 (±12)	187 (±61)	168 (±47)	28	33 (±6)	
Macroragione 2 Plames Padaria, alto semante adnatico e pree coobere dell'intile pestro mentanale	14.6 (10.7)	4 (11)	25 (19)	50 (±13)	148 (±55)	85 (±30)	20	40 (±8)	
Macroregione 3 Appending centro-mendionale	12.2 (±0.5)	4 (±1)	35 (±12)	15 (±8)	182 (±55)	76 (±28)	19	38 (±9)	
Macroregione 4 Avecateire	5.7 (±0.6)	10 (±3)	152 (±9)	1 (21)	143 (±47)	286 (±56)	25	32 (±8)	
Macroregione 5 Italia centro-settentrionale	8.3 (±0.6)	21 (±3)	112 (±12)	8 (45)	321 (689)	279 (156)	40	28 (±5)	
Macroregione 6 Aree insulari ed estremo sud italia	16 (±0.6)	3 (±1)	2 (±2)	35 (±11)	179 (161)	21 (±13)	19	70 (±16)	

Le principali criticità legate ai mutamenti climatici sono riassunti nelle figure a seguire:

D C B

Figura 3-3: evoluzione dell'andamento climatico in Italia per l'individuazione di cluster comuni (fonte PNACC 2017)

Figura 3-4: valori medi dei cluster delle anomalie individuati (PNACC 2017)

CLUSTER	Tmean (°C)	R20 (giorni/anno)	FD (giorni/anno)	SU95p (giorni/anno)	WP (%)	SP (%)	SC (giorni/anno)	Evap (%)	R95p (%)
A	1.4	-1	-20	18	-4	-27	-12	-6	1
	1.3		-19		-Z.	-24	-8		
С	1.2	0	-6	12	-5	-18	-1	-3	4
D	102					25			101
E	1.2	-2	-20	1	-8	-15	-21	1	-1

Per il cluster in cui ricade il Comune di Arzignano si riscontra una generale diminuzione dei giorni freddi, una riduzione delle precipitazioni estive (circa del 24%) e della copertura del manto nevoso.

3.1.1 Le risorse idriche

Negli ultimi decenni, l'alterazione del regime pluviometrico in termini di distribuzione, durata e intensità delle precipitazioni liquide e nevose, in concomitanza all'incremento complessivo delle temperature e alla maggiore intensità e frequenza degli eventi climatici estremi, hanno avuto conseguenze rilevanti sulla qualità e la quantità delle risorse idriche regionali.

Tra i principali impatti già osservati vi è:

≥ l'alterazione delle caratteristiche fisico-chimiche e biologiche delle acque superficiali e sotterranee, con conseguenze negative sulla qualità delle risorse idriche disponibili e sullo stato ecologico dei corpi idrici, in alcuni casi già compromesso;

- ≥ l'alterazione del ciclo idrologico, e in particolare del ciclo stagionale dei fiumi e laghi, incrementandosi i periodi di magra durante la stagione estiva e i periodi di piena durante i mesi invernali,
- ↘ la riduzione della disponibilità di risorse idriche utili (superficiali e sotterranee) e
 dell'umidità del suolo, per incremento della variabilità climatica e per una maggiore
 frequenza e intensità di eventi climatici estremi quali eventi siccitosi.

È prevedibile che nei prossimi decenni il cambiamento climatico riduca sostanzialmente l'offerta di risorse idriche utili in alcuni periodi dell'anno che, in concomitanza con la maggiore domanda stagionale per diversi usi quali irrigazione, industria, uso energetico, uso civile e turistico, creeranno i presupposti per una maggiore frequenza di situazioni di deficit nel bilancio fra domanda e offerta della disponibilità idrica utile (specialmente durante la stagione estiva).

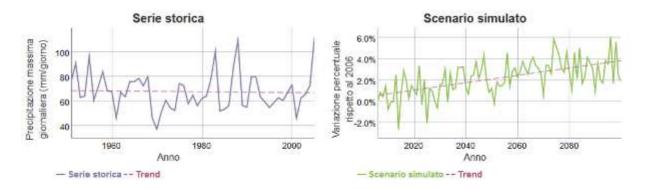
3.1.2 Gli ecosistemi, le biodiversità, le foreste e le aree protette

Le condizione meteo – climatiche hanno un ruolo di primaria importanza nella determinazione della composizione, della struttura e della produttività dei sistemi naturali; il cambiamento climatico e la variabilità delle principali variabili meteo – climatiche che regolano molti processi biofisici degli ecosistemi inducono effetti non trascurabili sulla biodiversità. In Regione Veneto la combinazione di fattori climatici e antropici hanno la probabilità di creare condizioni idonee per l'incremento del rischio di invasione/espansione di specie esotiche oltre all'aumento di specie infestanti, possono creare impatti negativi sugli ecosistemi boschivi regionali influenzando in modo negativo la loro capacità di fornire alcuni servizi ecosistemici fondamentali come l'immagazzinamento del carbonio.

3.2 RISCHI E VULNERABILITA' PRESENTI NEL COMUNE

Come precedentemente descritto, per questo genere di analisi è fondamentale la valutazione di quella che è definita essere l'evoluzione climatica dell'area oggetto di analisi. Il territorio in cui è collocato Arzignano è caratterizzato da un clima di tipo continentale, con temperature medie tra i 13 °C e i 15 °C. Le precipitazioni sono distribuite in modo abbastanza uniforme nell'arco dell'anno, la stagione più secca è l'inverno mentre l'estate è la stagione in cui di norma si concentrano gli eventi temporaleschi; le stagioni intermedie sono caratterizzate da perturbazioni atlantiche e mediterranee.

Per valutare l'evoluzione climatica della zona ed interpretare i mutamenti climatici in corso per calibrare adeguate strategie di adattamento è necessario partire dallo studio dello stato di fatto, ma anche affidarsi a strumenti che permettano di simulare gli scenari evolutivi dell'area in cui si inserisce Arzignano. A supporto di queste valutazioni si propone l'utilizzo dell'applicazione Web CAST (Climate Adaptation Support Tool) in corso di sviluppo nel progetto europeo IRIS (Improve Resilienceof Industry Sector LIFE14CCA/IT/000663) di cui TerrAria S.r.l. è uno dei 7 partner. CAST fornisce degli indicatori a supporto dell'analisi dell'evoluzione di fenomeni connessi ai cambiamenti climatici ed in particolare ondate di calore, ondate di freddo, precipitazione estreme,



siccità e trombe d'aria. I fenomeni considerati da IRIS sono quelli individuati come critici nella SNAC per la macroregione in cui si trova Arzignano e, come si vedrà di seguito, sono coerenti con quanto individuato nei documenti a corredo del PAT.

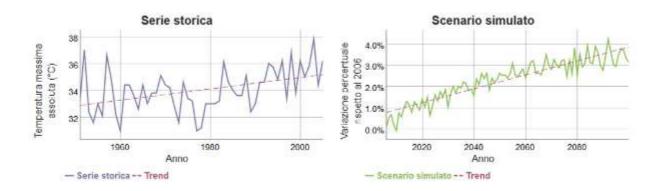

In particolare, utilizzando come stazione di riferimento la stazione meteo di Vicenza si può verificare l'andamento storico della temperatura massima assoluta, variabile proxy delle ondate di calore, nel periodo storico 1961 – 2005 e vedere come l'andamento delle previsioni modellistiche 2006 – 2100 dell'IPCC (Intergovernamental Panel on Climate Change) in particolare dello scenario RCP4.5 (di saturazione a poco più di 550 ppm della concentrazione atmosferica di CO₂) confermi anche per il futuro il trend storico di crescita delle temperature con conseguenti impatti sul rischio legato alle possibili ondate di calore. Sempre attraverso i dati della stessa stazione meteo si può verificare l'andamento storico della precipitazione massima giornaliera per il periodo storico 1951 – 2005 e vedere che l'andamento delle previsioni modellistiche dell'IPCC evidenzi un trend di crescita nel futuro anche se meno significativo di quello delle temperature massime.

Figura 3-5: precipitazioni estreme, precipitazione massima giornaliera in mm/giorno, serie storica (sinistra) e scenario cumulato (destra) (fonte: IRIS)

Valutando la serie storica delle precipitazioni massime giornaliere emerge un trend di calo, simulando invece lo scenario al 2100 si può notare la possibile evoluzione all'aumento del fenomeno, il rischio di esondazioni potrebbe quindi aumentare.

Figura 3-6: temperature massime in °C, serie storica (sinistra) e scenario cumulato (destra) (fonte: IRIS)

Gli scenari simulati per il fenomeno denotano un trend di crescita e quindi, potenzialmente, l'inasprirsi rispettivamente del rischio ondate di calore.

Il tool permette inoltre di visualizzare che tipo di rischio e dove questo rischio viene collocato dai principali enti in merito ai rischi naturali. Nel caso di Arzignano si riportanole Aree a pericolosità da frana PAI della Mosaicatura ISPRA delle aree a pericolosità da frana dei Piani di Assetto Idrogeologico (PAI), redatti dalle Autorità di Bacino, Regioni e Province Autonome.

Figura 3-7: Aree a pericolosità da frana PAI (fonte: IRIS, Mosaicatura ISPRA)

3.2.1 Il comune di Arzignano

Analizzando i documenti pianificatori di Arzignano vengono evidenziati due tipi di potenziale rischio:

- ➤ Rischio geologico
- → Rischio idrogeologico

La relazione geologica che correda il PAT mette in luce quelle che sono le criticità sul territorio comunale di Arzignano, in particolare, vengono evidenziati fenomeni ascrivibili alla tipologia frana localizzati dove si trovano depositi prevalentemente argillosi derivati dall'alterazione del substrato vulcanico. Di seguito si riporta l'elenco delle frane definite attive in quanto c'è la possibilità che si riattivino in seguito ad eventi piovosi e/o intensi:

- ≥ Località S. Bortolo: si evidenziano due corpi di frana, nella zona bassa dell'area si verificano fenomeni di venute d'acqua, ristagni e rigonfiamenti;
- ∨ Via Capitello: si evidenziano due movimenti di frana di tipo colata che confluiscono nel torrente a valle del Ceredo, spesso interessano la strada;
- Via Marcello-via Tordera e contrada Massignari: in quest'area si è manifestata una frana di colamento. Si verificano ristagni, sono presenti lesioni a strade e ad abitazioni;
- Via Costalta: è soggetta a frana di scorrimento con crolli di grandi massi.

In diverse parti del territorio comunale si verificano fenomeni di creep. Arzignano è inoltre inserito dal PTCP nell'"Ambito Carsico Monti Lessini, nel VML 13: Dorsale Montebello Vicentino – Durlo per il sito "Buso della Volpe" in località San Zenone.

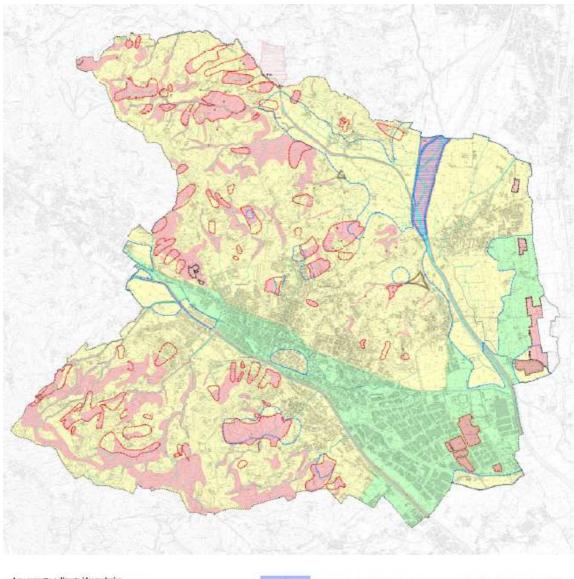


Figura 3-8: carta delle fragilità (fonte: Relazione geologica del PAT)

Nella carta della fragilità vengono messe in evidenza anche le fasce potenzialmente esondabili e le aree a pericolosità idraulica ai sensi del PAI del bacino Adige e del bacino Brenta e Bacchiglione.

Il quadro che risulta dall'analisi del contesto di Arzignano non è tale da evidenziare particolari fenomeni, vista però l'evoluzione potenziale degli scenari meteo – climatici sarà fondamentale monitorare le situazioni in cui è stata riscontrata la presenza di potenziali vulnerabilità.

Il Comune ha previsto le seguenti azioni che trovano corrispondenza in quelle formalizzate di seguito, al paragrafo 7:

- ☑ Riduzione dei consumi idrici con la diffusione dei riduttori di flusso;
- ☑ Riduzione delle perdite da rete acquedottistica;
- ∠ Aumento del territorio permeabile (pavimentazioni drenanti);
- Miglioramento capacità drenante della rete delle acque meteoriche;
- ☑ Attività di manutenzione delle caditoie;
- ☑ Riduzione del consumo di suolo;
- △ Adattamento pratiche colturali alle mutate condizioni climatiche;
- ☑ Miglioramento efficienza impianti di irrigazione;
- ☑ Campagna di prevenzione problematiche di parassitologia urbana;
- ☑ Sistema di allerta e comunicazione ai cittadini per eventi eccezionali;
- Niduzione degli sbalzi termici e violenza del vento con forestazione urbana e alberate periurbane;
- ☑ Aumento della biodiversità nei parchi cittadini;
- Sercitazioni Piano di Protezione Civile, Piani di emergenza esterna, Viabilità alternativa, guasti infrastrutture su larga scala;
- Predisposizione piano di supporto e assistenza per le persone anziane, disabili o deboli in occasione di ondate di calore, gelo o altre calamità naturali;
- Attività preventive di manutenzione dell'alveo dei fiumi e dei torrenti, degli argini e dei ponti.

4. OBIETTIVO DI CONTENIMENTO DELLE EMISSIONI AL 2030

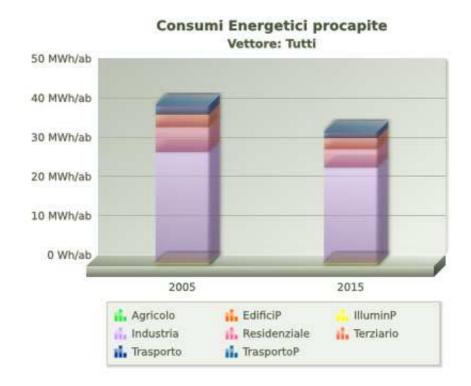
4.1 SCENARIO BUSINESS AS USUAL E OBIETTIVO MINIMO DEL PATTO DEI SINDACI

Il Patto dei Sindaci per il Clima e l'Energia richiede che le azioni di riduzione delle emissioni di CO2 siano stimate rispetto all'anno di riferimento della BEI, pertanto il 2005. È tuttavia opportuno stimare quelli che fino al 2030 possano essere gli impatti energetico-emissivi legati alle previsioni di aumento di popolazione, di edificato residenziale e di attività produttive e terziarie sul territorio comunale, in modo tale che si possano prevedere azioni specifiche nel PAESC volte a contenere i consumi addizionali previsti, garantendo così il raggiungimento dell'obiettivo di riduzione preposto.

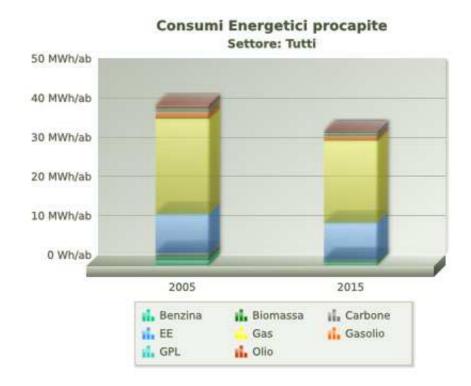
Qualora si preveda una forte modificazione del territorio comunale (in particolare in termini di aggiunta di nuovi edifici e nuove attività), si dovrà valutare una riduzione del 40% riferita alle emissioni per abitante e non in termini assoluti. Tale approccio è consentito dalla Linee Guida del JRC per la redazione dei PAESC.

Nei paragrafi seguenti si illustrano le elaborazioni specifiche per Arzignano.

4.1.1 La valutazione dell'andamento 2005-2015


Fondamentale per calibrare in modo completo l'obiettivo al 2030 è importante valutare quale sia l'evoluzione dello scenario dei consumi e delle emissioni del Comune al 2015.

Se si analizzano i consumi si può notare una diminuzione totale del 15% tra il 2005 e il 2015, questa diminuzione è imputabile in modo particolare al settore residenziale.



Analizzando la suddivisione dei consumi per combustibili si nota un decremento dei consumi in generale ma in particolare di energia elettrica e gas naturale:

Figura 4-2: Consumi energetici per vettore del Comune di Arzignano al 2005 e al 2015 (fonte: CO20)

La situazione appena descritta è del tutto simile a quella che si ritrova nell'analisi del contesto emissivo:

Figura 4-3: Emissioni del Comune di Arzignano al 2005 e al 2015 (fonte: CO20)

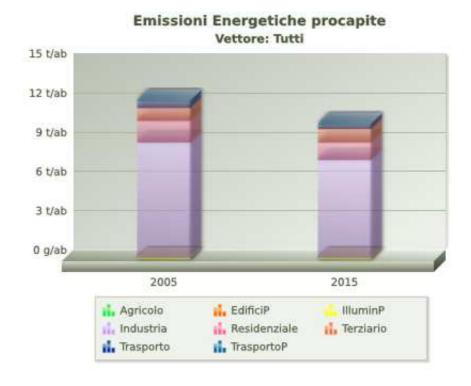
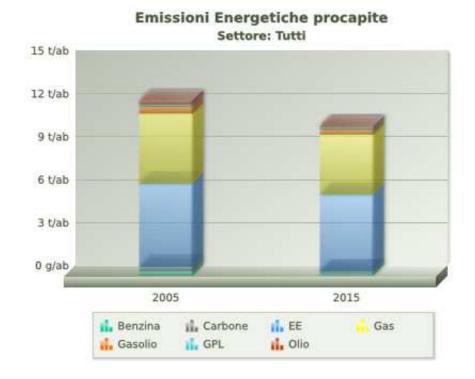



Figura 4-4: Emissioni per vettore del Comune di Arzignano al 2005 e al 2015 (fonte: CO20)

Sia i consumi che le emissioni di Arzignano sono in calo, questo restituisce una buona prospettiva nell'affrontare la pianificazione dell'obiettivo di riduzione delle emissioni al 2030.

4.1.2 La valutazione degli incrementi emissivi 2005-2030

Gli incrementi emissivi derivanti dall'incremento della popolazione sono stati stimati in modi differenti a seconda del settore e del vettore. Nel caso in cui siano in previsione significativi interventi di espansione dei settori residenziale e terziario questi sono stati quantificati in termini emissivi. Considerando il contesto comunale, si è scelto di non considerare il settore produttivo nel computo emissivo.

Di seguito si dettagliano le modalità di stima adottate:

- per quanto riguarda il settore terziario non comunale, la stima è stata effettuata considerando degli indici medi di consumo specifico, in particolare pari a 45 kWh/mq per i consumi relativi al vettore elettrico e pari a 75.6 kWh/mq per la parte dei consumi termici, moltiplicando poi per i fattori di emissione medi comunali del vettore elettrico e termico;
- per il settore residenziale gli incrementi emissivi sono stati stimati a partire dalle emissioni comunali per il vettore elettrico all'anno di riferimento, moltiplicando per l'incremento del numero di abitanti, e a partire da un consumo specifico pari a 97.3 kWh/mq per tutti gli altri vettori termici,
- per l'illuminazione pubblica è stato considerato un incremento calcolato sulla base delle emissioni procapite comunali al 2005 moltiplicate per l'incremento di popolazione considerato;
- per il settore dei trasporti privati e commerciali è stato infine considerato un incremento emissivo pari al valore procapite registrato per il 2005 moltiplicato per l'incremento nel numero di abitanti.

In particolare, i dati considerati e i risultati ottenuti in termini di incrementi emissivi sono riassunti in Tabella 4-1. Si sottolinea, infine, che tali dati sono stati considerati come incrementi rispetto alla situazione al 2005: complessivamente si stima una crescita delle emissioni tra il 2005 e il 2030 pari a 1'418 tonnellate di CO_2 (pari a circa il 2% delle emissioni al 2005), applicando un CAGR pari allo 0.3% ed ipotizzando quindi una crescita della popolazione pari a 1'131 unità.

Tabella 4-1: dati utilizzati per il calcolo degli incrementi emissivi dovuti allo sviluppo demografico di Arzignano (fonte: nostra elaborazione)

STIMA DEGLI INCREMENTI EMISSIVI 2005-2030								
DATO	EMISSIONI CO ₂ [t]							
Incremento ambito RESIDENZIALE [mq Slp]	0	Edifici residenziali - Usi termici	0					
Esistente ambito PRODUTTIVO [mq ST]	0	C-H	0					
Incremento ambito PRODUTTIVO [mq ST]	0	Settore produttivo	Ū					
Incremento ambito TERZIARIO [mq Slp]	0	Edifici, attrezzature/impianti del terziario (non comunali)	0					
		Edifici residenziali - Usi elettrici	700					
Incremento POPOLAZIONE [ab]	1'131	Illuminazione pubblica	53					
		Trasporti privati e commerciali	665					
TOTALE INCREMENTO EMISSIONI			1'418					

4.1.3 Il calcolo dell'obiettivo di riduzione delle emissioni

In Figura 4-5 sono riportate le emissioni comunali al 2005 (BEI) confrontate con le emissioni previste al 2030, stimate a partire dalle emissioni del BEI sommate agli incrementi emissivi valutati nel precedente paragrafo, e con l'obiettivo emissivo minimo del PAESC (riduzione del 40% delle emissioni rispetto al 2005). I dati mostrati non comprendono le emissioni legate al settore produttivo.

Rispetto alle emissioni del BEI (85'389 tonnellate), l'obiettivo di riduzione delle emissioni di CO₂ per il 2030 è pari a circa 51'233 tonnellate. A questo obiettivo assoluto va tuttavia aggiunta la quota di emissioni prevista in relazione all'aumento della popolazione, a tal proposito si mostra la situazione al 2015 e al 2030.

2005

Figura 4-5: confronto dell'obiettivo di riduzione delle emissioni al 2030, in termini assoluti, con le emissioni a 2030 e del BEI (2005), e le emissioni BEI corrette del valore addizionale derivante dalle espansioni previste (fonte: disaggregazione, dati comunali – nostra elaborazione)

■ Emissioni Incrementi emissivi stimati C___'Obiettivo di riduzione - - Obiettivo emissivo 100'000 90'000 80'000 70'000 35'574 60'000 51'233 50'000 85'389 85'389 40'000 75'875 30'000 51'233 20'000 10'000 0

TREND EMISSIVO - Settore produttivo escluso [t di CO₂]

L'incremento emissivo stimato in base alla crescita della popolazione è pari a 1'418 tonnellate al 2030, al 2015 si registra invece un calo rispetto al 2005 (in azzurro sfumato in Figura 4-5). L'obiettivo di riduzione al 2030, calcolato su questo nuovo assetto emissivo, è pari a 35'574 tonnellate, mostrato in bianco nella colonna a destra. Si tratta quindi di dover perseguire un obiettivo impegnativo che implica certamente un lavoro straordinario per l'AC anche coinvolgendo il più possibile i cittadini e le attività produttive presenti sul territorio.

2030(senza PAESC)

2030 (PAESC)

2015

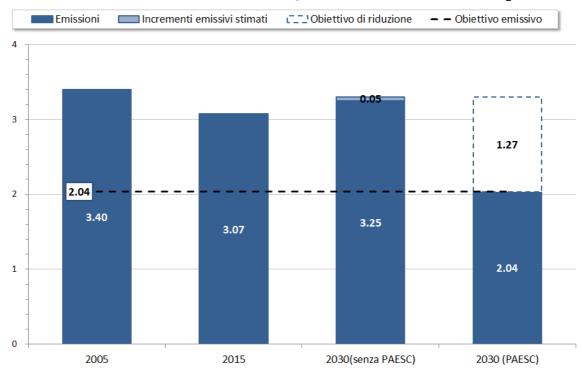

La situazione descritta è quella di evoluzione del territorio, che, come consentito anche dalle Linee Guida del JRC per la redazione dei PAESC, suggerisce di adottare un obiettivo procapite che consente di normalizzare l'aumento di emissioni assolute alla crescita prevista di popolazione. In particolare, per tali elaborazioni le emissioni sono state normalizzate rispetto alla popolazione al 2005 per il BEI e rispetto a quella prevista al 2030 per le emissioni BEI+ crescita emissiva.

Figura 4-6: confronto dell'obiettivo di riduzione delle emissioni al 2030, in termini procapite, con le emissioni del BEI (2005) e le emissioni BEI corrette del valore addizionale derivante dalle espansioni emissive (fonte: SIRENA20, dati comunali – nostra elaborazione)

TREND EMISSIVO PROCAPITE - Sett. produttivo escluso [t/ab. di CO₂]

Sempre senza considerare il settore produttivo, le emissioni procapite al 2005 sono pari a 3.40 t/ab con un obiettivo di 2.04 t/ab da raggiungere al 2030 (40% in meno). Al 2030 tenendo conto dei maggiori consumi previsti dagli incrementi emissivi, le emissioni procapite stimate risultano pari a 3.31 t/ab, con un obiettivo di riduzione pari a circa 01.27 t/ab necessari a raggiungere l'obiettivo pari a 2.04 t/ab.

Si riporta di seguito una tabella riassuntiva della situazione del Comune e delle scelte che è possibile condurre.

Tabella 4-2: riepilogo delle diverse combinazioni che è possibile considerare per la valutazione dell'obiettivo di riduzione delle emissioni del PAESC del comune di Arzignano (nostra elaborazione)

CALCOLO DELL'OBIETTIVO DI RIDUZIONE								
Anno	2005	2015	2030 (senza PAESC)	2030 (con PAESC)				
Popolazione [ab]	25'143	25'843	26'274	26'274				
OBIETTIVO IN TERMINI ASSOLUTI - Settore produttivo escluso								
Emissioni totali [t]	85'389	75'875	86'807	51'233				
Obiettivo di riduzione [t]	34'155	24'642	35'574	-				
OBIETTIV	O PROCAPITE - Set	tore produttivo	escluso					
Emissioni totali [t/ab]	3.40	3.40	3.30	2.04				
Obiettivo di riduzione procapite [t/ab]	1.36	1.36	1.27	-				
Obiettivo di riduzione [t]	34'155	35'106	33'269	-				

4.2 SCENARIO BUSINESS AS USUAL E OBIETTIVO MINIMO DEL PATTO DEI SINDACI

A partire della situazione energetica del comune di Arzignano, sono state definite le strategie presentate nel capitolo successivo, declinate poi in termini numerici nella fase di quantificazione dei risultati conseguibili attraverso le azioni previste: a tal proposito si rimanda alla tabella riportata in appendice.

Sulla base di tali risultati è stato quindi possibile definire l'obiettivo effettivo del PAESC di Arzignano che è stato determinato non includendo il settore produttivo. Le analisi svolte permettono quindi di fissare come obiettivo minimo del PAESC del comune di Arzignano una riduzione, rispetto al 2005, delle emissioni assolute, escludendo il settore produttivo, pari al 40% entro il 2030, corrispondente a 50'606 tonnellate di CO_2 .

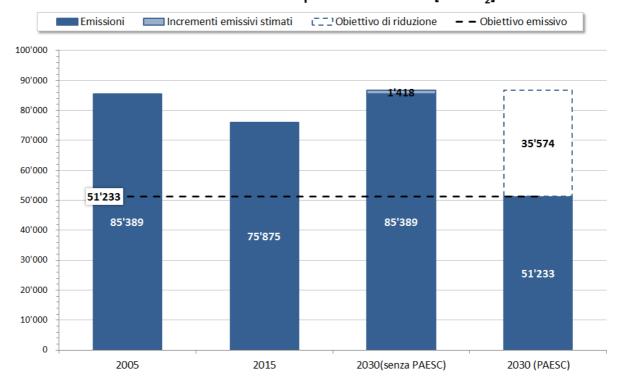

In Figura 4-7 si riporta la situazione emissiva prevista al 2030, mostrando gli effetti in termini emissivi delle azioni previste dal PAESC di Arzignano, confrontata con le emissioni al 2005 (BEI) e con l'obiettivo emissivo dichiarato.

Figura 4-7: emissioni al 2005 (BEI) confrontate con le emissioni previste e pianificate dal PAESC al 2030 (fonte: nostra elaborazione)

TREND EMISSIVO - Settore produttivo escluso [t di CO₂]

5. VISION E L'OBIETTIVO DEL PATTO DEI SINDACI

5.1 VISION TERRITORIALE

La vision del PAESC è un'idea intenzionale di futuro, un'aspirazione rispetto al cambiamento climatico da un lato mirato al tema energetico e dall'altro all'adattamento, costruita attraverso un confronto aperto con alcuni dei soggetti che a vario titolo agiscono sul territorio del Comune di Arzignano.

A partire da quanto tracciato nel BEI, che costituisce la base argomentativa delle scelte di Piano, la vision si misura con le risorse a disposizione e con il patrimonio umano e materiale che connotano questo territorio.

La definizione della vision di Arzignano assume come elementi generatori i seguenti principi:

Incentivare l'efficienza energetica e lo sviluppo sostenibile nel territorio

Del Comune di Arzignano, rendendolo un luogo in cui lo stile di vita e le trasformazioni future contribuiscono allo sviluppo sostenibile, facendo in modo che il consumo e la produzione di energia utilizzino le risorse in modo efficiente riducendo l'inquinamento locale e le emissioni di CO₂.

Migliorare la qualità energetica ambientale dell'esistente

coinvolgendo i settori privati in un processo di efficientamento sia della dotazione impiantistica che del patrimonio edilizio e favorendo al contempo la diffusione delle fonti energetiche rinnovabili. La qualità dei nuclei abitati e dei servizi in esso presenti è il fattore sul quale si gioca il consolidamento del senso di appartenenza della comunità locale e delle reti di relazioni sociale, pertanto la vision che il Comune di Arzignano può esprimere è quella di tendere a migliorare lo stato energetico descritto dal BEI.

Le determinazioni di Piano e il relativo scenario, che vengono presentati successivamente, scaturiscono, in modo diretto o indiretto, dalla vision e dai principi sopra esposti.

Creare e sostenere la capacità di adattamento dei cittadini ai cambiamenti climatici

Attivare politiche e strategie per incrementare la resilienza locale attraverso la consapevolezza e la conoscenza di azioni rivolti alla riduzione del rischio al fine di prevenire i potenziali impatti generati.

I precedenti principi si traducono nel seguente obiettivo quantitativo:

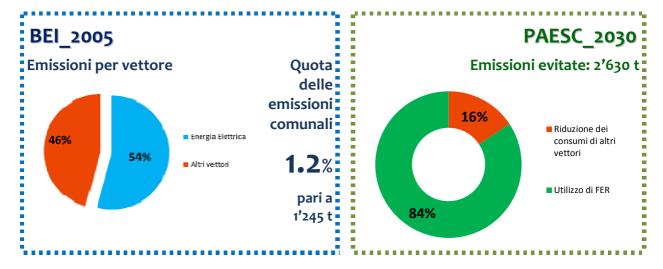
Riduzione di almeno il 40% delle emissioni totali assolute al 2030 di CO2

questo obiettivo per il territorio di Arzignano si traduce quantitativamente in una riduzione delle emissioni rispetto all'esistente, escludendo il settore produttivo ma includendo quello agricolo, pari a 35'574 tonnellate di CO₂ (vedi paragrafo precedente). Si ricorda che tale obiettivo è valutato non solo rispetto alle caratteristiche dei consumi del patrimonio e delle dinamiche all'anno di riferimento del BEI (2005), ma include anche gli effetti in termini emissivi dell'incremento della popolazione calcolato per mezzo del CAGR. Tale obiettivo è raggiungibile in primo luogo attraverso la riduzione dei consumi energetici e successivamente attraverso l'aumento della produzione ed uso di energia rinnovabile.

5.2 DEFINIZIONE DELLE STRATEGIE E DELLE AZIONI

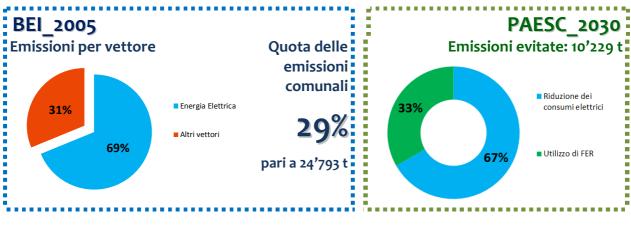
La matrice a seguire intende restituire il percorso logico effettuato per individuare quali azioni prevedere per il raggiungimento dell'obiettivo del PAESC, analizzando singolarmente i diversi settori.

In particolare, per ciascuno di essi viene restituita una scheda riassuntiva, articolata in due parti:


- ✓ quadro conoscitivo al 2005, integrato con quanto già compiuto fino al 2015, costituito dalle risultanze emerse durante la fase analitico-quantitativa del BEI relativamente ai caratteri e ai consumi dei diversi settori e campi di azione che caratterizzano il territorio, restituendoli attraverso:
 - le <u>criticità</u> che manifesta, ovvero le situazioni spaziali e/o funzionali e/o energetiche che non permettono un buon efficientamento energetico attuale;
 - le <u>opportunità</u> cui rimanda, ovvero la possibilità di ri-connotare l'elemento descritto in modo da migliorare le prestazioni energetiche esistenti;
 - le <u>emissioni</u> del settore e dei suoi principali vettori al 2015.
- ≥ meta progetto elaborato sulla base delle indicazioni che emergono dal percorso di "costruzione condivisa" del Piano, ovvero attraverso il processo di interlocuzione che ha visto il coinvolgimento di alcuni soggetti portatori di interessi, e che si articola secondo le seguenti individuazioni:
 - le <u>strategie</u> necessarie per una sua qualificazione affinché sia possibile il raggiungimento dell'obiettivo e l'individuazione di azioni specifiche per il contesto territoriale;
 - le <u>azioni</u> che devono essere attuate e monitorate ogni quattro anni;
 - il <u>ruolo dell'AC</u>: nell'attuare in prima persona le azioni specifiche.

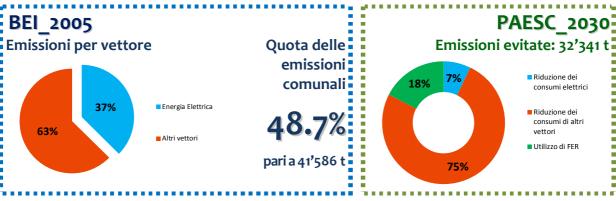
Edifici, attrezzature/impianti comunali

CRITICITÀ		Patrimonio pubblico con necessità di interventi migliorativi per incrementare l'efficienza energetica	
OPPORTUNITÀ	E' stato stipulato un contratto di "Servizio Energia Integrato" per il miglioramento delle prestazioni energetiche degli edifici comunali	Sono state effettuate diagnosi energetiche degli edifici pubblici Tra il 2008 e il 2015 sono stati installati pannelli fotovoltaici su 7 edifici di proprietà comunale	Possibilità di installazione di impianti fotovoltaici e di impianti solari termici.


STRATEGIE	Monitoraggio dei consumi reali degli edifici	Efficientamento energetico	Incremento dell'utilizzo di FER
AZIONI	Raccolta e archiviazione metodica delle bollette	Interventi su impianti e involucro degli edifici pubblici in seguito a diagnosi energetica Accedere agli incentivi del Conto Termico 2.0	Installazione di nuovi impianti fotovoltaici e solari termici. Relamping lampade interne
RUOLO dell'AC	Implementazione software CO ₂₀ Plus	Breve periodo: realizzazione degli interventi più "immediati"	Medio periodo: reperimento di finanziamenti idonei per interventi più complessi sul patrimonio edilizio pubblico

Edifici, attrezzature/impianti del terziario (non comunale)

CRITICITÀ	Disponibilità di informazioni solo di tipo statistico	Nessuna informazione circa la presenza di impianti FER in ambiti terziari
OPPORTUNITÀ	Coinvolgimento delle utenze terziarie non comunali nel processo di redazione del PAESC	Riduzione dei consumi elettrici e termici tramite l'efficientamento del patrimonio esistente


STRATEGIE	Incentivare la riqualificazione energetica del patrimonio esistente	Promuovere l'energia rinnovabile attraverso la sensibilizzazione					
AZIONI	Interventi di sostituzione delle apparecchiature elettriche Interventi di efficientamento su involucro e impianti termici	Riqualificazione impianti elettrici e termici					
dell'AC	Campagne di informazione sulle possibili	ità di intervento (Sportello Energia)					
RUOLO dell'AC	Coinvolgimento diretto degli stakeholder (energy manager) Diffusione di forme di FTT utilizzate nel pubblico anche nel privato es. condomini. Azione di coinvolgimento degli amministratori di condominio						

Edifici residenziali

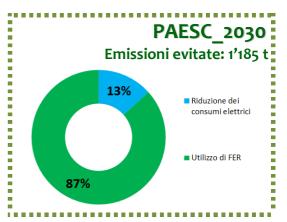
Disponibilità di informazioni solo Oltre il 70% degli edifici sono stati Limitata presenza di impianti di tipo statistico costruiti prima che entrassero in fotovoltaici in ambito residenziale vigore le prime leggi con prescrizioni di efficienza e risparmio energetico Il 77% dei consumi termici del Ridotti costi di investimento per OPPORTUNITÀ settore è attribuibile ad edifici che l'installazione del fotovoltaico hanno più di 30 anni Detrazioni fiscali per interventi di efficientamento energetico presenti anche nel 2019

~		3111111						
STRATEGIE	Efficientamento tecnologico, razionalizzazione e contenimento dei consumi energetici	Incentivare la riqualificazione energetica del patrimonio esistente	Promuovere l'energia rinnovabile					
AZIONI	Sostituzione di apparecchiature elettriche (lampadine, elettrodomestici, etc.) Sostituzione di caldaie obsolete Installazione di dispositivi per il risparmio energetico (es. valvole termostatiche)	Interventi di riqualificazione dell'involucro (pareti, copertura, serramenti) Requisiti minimi di prestazione energetica per nuovi edifici e edifici ristrutturati	Installazione di impianti fotovoltaici e solare termico su edifici esistenti					
RUOLO dell'AC		Campagne di promozione e informazione sulle possibilità d'intervento, coinvolgimento stakeholder locali. Diffusione di forme di FTT utilizzate nel pubblico anche nel privato es. condomini. Azione di coinvolgimento degli amministratori di condominio						
R de		Creazione dello sportello energia						

Illuminazione pubblica

CRITICITÀ

Più della metà del parco lampade comunale è a vapori di mercurio, la tecnologia a LED è percentualmente poco presente sul territorio comunale


Scarsa conoscenza dei consumi energetici.

OPPORTUNITÀ

Ammodernamento del parco lampade comunale tra il 2015 e il 2020

Partecipazione al bando di Regione Lombardia rivolta all'efficientamento energetico dell'IP, con il progetto provinciale LUMEN.

STRATEGIE	Efficientamento tecnologico
AZIONI	Sostituzione delle lampade a vapori di mercurio con lampade a LED Installazione di pali intelligenti
RUOLO dell'AC	Verifica della fattibilità delle sostituzione dei punti luce in questione Attivazione di strumenti PPP

Settore agricolo

La maggior parte del territorio comunale è agricolo
Si registrano consumi di gasolio, energia elettrica, gas naturale e, in minima parte di GPL.

Presenza di molta superficie a disposizione

PAESC_2030

Emissioni evitate: - t

Le azioni saranno da

concordare con gli

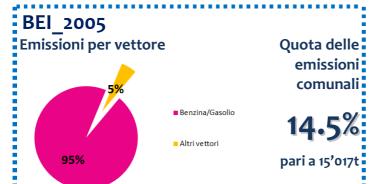
stakeholder tenendo

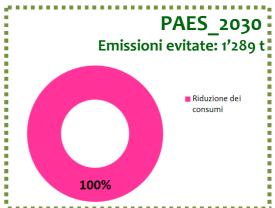
fissa la volontà

dell'AC di sviluppare

rinnovabili

STRATEGIE	Coinvolgimento degli stakeholder	Promuovere l'energia rinnovabile Programmazione urbanistica specifica attenta al non			
STRA		impoverimento della risorsa agricola			
AZIONI	Razionalizzazione dell'uso dell'energia.	Installazione di fotovoltaico			
RUOLO dell'AC	Campagne di informazione sulle possibilità di intervento (Sportello Energia)				
	Coinvolgimento diretto degli stakeholder (energy manager)				


Trasporti


	_
1	a
1	
	_
13	_
- (
1.6	=
ш	
15	-
ш	~

I consumi di gas naturale e GPL (vettori meno emissivi) rappresentano una parte minoritaria rispetto ai consumi totali Predisposizione all'uso del mezzo privato per gli spostamenti

OPPORTUNITÀ

L'UE si è dotata di standard che prevedono livelli medi di emissioni per le nuove vetture sempre più restrittivi nell'ambito della COP21 Sviluppo della mobilità sostenibile

STRATEGIE	Rinnovo del parco veicolare privato	Politiche di mobilità alternative al mezzo privato (mobilità sostenibile)
AZIONI	Sostituzione e/o acquisto di nuovi mezzi meno emissivi	Servizio pedibus Individuazione di percorsi ciclabili Mercatini a km o
RUOLO dell'AC	Campagne di informazione sulle possibilità di sostituzione e sull'utilizzo di combustibili meno impattanti	Organizzazione del servizio pedibus Messa in opera di percorsi ciclabili Acquisto di veicoli basso emissivi

5.3 SCENARIO OBIETTIVO DEL PAESC

A partire dai risultati delle analisi condotte nei paragrafi precedenti, sono stati determinati per ciascun settore i margini di intervento specifici per il territorio di Arzignano, valutando numericamente i risparmi energetici conseguibili e le effettive possibilità di incremento della diffusione di fonti energetiche rinnovabili. A partire da tali elaborazioni è stato definito lo scenario obiettivo del PAESC che permette di raggiungere e superare l'obiettivo dichiarato (ossia una riduzione del 40% delle emissioni assolute includendo il settore produttivo), costruito sulla base delle seguenti ipotesi:

- impegno massimo da parte dell'AC per la piena attuazione delle azioni previste per il comparto pubblico, come suggerito dal JRC: in particolare, è stata eseguita una valutazione sull'efficienza energetica di 18 edifici, è stato attivato un project financing denominato "Servizio Energia Integrato" affidato alla ditta concessionaria Carbotermo sono stati realizzati una serie di interventi sugli edifici del Comune, sulle scuole e sugli impianti sportivi, diretti a migliorarne la prestazione energetica e ridurre i costi della bolletta energetica; sono previsti interventi di diverso tipo, in particolare: realizzazione di 6 impianti fotovoltaici per un totale di 100 kW (scuola Fogazzaro, scuola di Villaggio Giardino, scuola di San Zeno, scuola di San Bortolo, scuola Zanella; la realizzazione di 4 impianti solari termici per la produzione di acqua calda sanitaria (scuola di San Bortolo, campo sportivo di Villaggio Giardino, campo sportivo di San Bortolo, campo sportivo di Restena), l'implementazione di 6 interventi di miglioramento dell'isolamento per la riduzione della dispersione termica negli edifici (scuola di San Zeno, scuola di San Rocco, scuola di Tezze, scuola Zanella, due interventi sulla scuola Motterle), la sostituzione di 14 caldaie con nuovi generatori di calore a condensazione per il risparmio energetico (Palazzo Comunale, Villa Brusarosco, scuola di San Bortolo, scuola di Castello, scuola Fogazzaro, scuola di Villaggio Giardino, scuola di San Zeno, scuola di San Rocco, scuola di San Bortolo, scuola Zanella, stadio Dal Molin, campo sportivo di Villaggio Giardino, campo sportivo di San Bortolo, campo sportivo di Restena), l'efficientamento dell'illuminazione interna degli edifici comunali; per quanto riguarda l'illuminazione pubblica, invece, il Comune sta procedendo con interventi di sostituzione di lampade a vapori di mercurio/sodio con lampade a LED; in merito al parco auto comunale, i veicoli più obsoleti verranno sostituiti con veicoli elettrici e veicoli meno emissivi degli esistenti.
- Sintenso coinvolgimento della popolazione locale per il raggiungimento di una quota significativa dell'obiettivo di riduzione del PAESC attraverso le azioni suggerite per il settore residenziale, concentrando gli sforzi verso: contenimento dei consumi elettrici attraverso campagne di informazione e formazione relativamente alle possibilità di sostituzioni di apparecchiature elettriche; incentivazione alla riqualificazione energetica del patrimonio edilizio esistente, mediante informazione sulle forme di incentivi statali (es. detrazioni fiscali, con un particolare focus per i condomini) a disposizione per gli interventi sull'esistente e introducendo vincoli costruttivi tramite gli strumenti urbanistici a disposizione dell'AC per indirizzare le trasformazioni future; contenimento dei consumi termici e delle relative emissioni anche attraverso impianti più efficienti e l'applicazione della LR 3/2011, che

introduce l'obbligo di installazione di sistemi di contabilizzazione autonoma e termoregolazione del calore per gli impianti a servizio di più unità immobiliari;

- ≥ aumento della diffusione delle tecnologie per l'approvvigionamento di energia da FER nei settori residenziale e terziario mediante attività di promozione per gli edifici esistenti e l'adeguamento rispetto al D.Lgs. 28/2011 che introduce quote obbligatorie di FER incrementali nel tempo per gli interventi di ristrutturazione e di nuova costruzione;
- ≥ coinvolgimento dei soggetti operanti nel settore terziario non comunale e nel agricolo, fornendo inoltre assistenza informativa per la ricerca di finanziamenti e agevolazioni di cui sarà possibile usufruire;
- > promozione della mobilità sostenibile, attraverso il potenziamento degli itinerari ciclopedonali esistenti, e organizzazione di campagne di informazione per favorire il rinnovo del parco auto veicolare e la diffusione dell'utilizzo di combustibili più efficienti.

Le tabelle e i grafici seguenti riportano in sintesi i risultati principali ottenibili attraverso le azioni previste nel Piano d'Azione di Mitigazione del Comune di Arzignano per settore di intervento. Si rimanda, invece, al capitolo successivo per maggiori dettagli in merito alle azioni pianificate per ciascun settore affrontate in specifiche schede.

In Tabella 5-1 si riporta la situazione del comune di Arzignano in termini di consumi energetici pianificata dal PAESC e confrontata rispetto ai consumi considerati nel BEI al 2015 e a quelli stimati al 2030 sulla base delle previsioni di incremento della popolazione desunte da CAGR.

Tabella 5-1: consumi energetici del comune di Arzignano al 2005 (BEI), previsti al 2030 e pianificati dal PAESC al 2030 con indicata la quota coperta attraverso FER suddivisi per settore (fonte: nostra elaborazione)

PROIEZIONE DEI CONSUMI ENERGETICI COMUNALI [MWh]									
Settori d'intervento	BEI	Previsti al 2030	Risparmi al 2030	Pianificati al 2030	Riduzione rispetto a previsioni	Quota FER al 2030			
Terziario comunale	3'975	3'975	1'975	2'000	50%	185%			
Terziario non comunale	80'896	80'896	11'656	69'240	14%	8%			
Edifici residenziali	160'817	162'013	107'541	54'472	66%	35%			
Illuminazione pubblica	2'025	2'117	311	1'805	15%	112%			
Settore agricolo	5'344	5'344	0	5'344	0%	0%			
Trasporti	58'034	58'034	11'370	46'664	20%	0%			
TOTALE	311'091	312'378	132'853	179'525	43%	15%			

Rispetto ai consumi del BEI si prevede che al 2030 i consumi totali siano maggiori del 2% circa a causa dell'aumento di popolazione. Attraverso le azioni previste dal PAESC si stima che si possano ridurre del 43% circa i consumi attesi al 2030, attraverso azioni specifiche definite in base alle caratteristiche di ciascun settore.

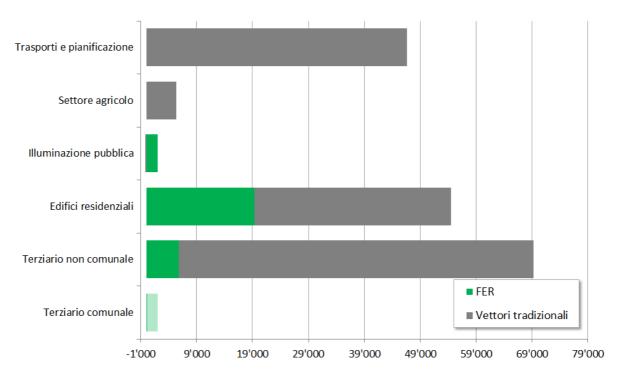
In particolare, per quanto riguarda il comparto pubblico, si prevedono interventi sull'involucro, sugli impianti termici obsoleti degli edifici pubblici e l'efficientamento degli impianti di illuminazione interna degli edifici: si stima che tali interventi possano portare ad una riduzione, che sommata all'acquisto di energia verde, dei consumi degli edifici comunali pari al 185% circa. Relativamente all'illuminazione pubblica si stima invece che attraverso le sostituzioni iniziate e alla totale sostituzione dei punti luce obsoleti, si possano diminuire i consumi di oltre il 100%.


Una riduzione dei consumi consistente, pari al 49% circa, è invece prevista per il residenziale: tale riduzione è raggiungibile attraverso la sostituzione di tecnologie obsolete (sia apparecchiature elettriche, come lampadine e frigocongelatori, sia caldaie), interventi di efficientamento dell'involucro edilizio (su pareti, copertura e infissi) e l'installazione di apparecchi per la riduzione degli sprechi di energia (valvole termostatiche, sistemi per la contabilizzazione del calore e la termoregolazione).

Per quanto riguarda il settore trasporti, si prevede invece un abbattimento dei consumi pari al 20% circa, grazie soprattutto alla sostituzione naturale del parco veicolare presente al 2005 con mezzi meno emissivi. Infine, la possibilità di riduzione dei consumi del settore terziario non comunale è stata valutata considerando un coinvolgimento degli stakeholder mediante tavoli di confronto con gli stessi finalizzati ad individuare strategie specifiche di intervento: è stato quindi ipotizzato che, soprattutto grazie a quanto è possibile fare sull'esistente, sarà possibile arrivare entro il 2030 ad una riduzione dell'ordine del 9%. Nel computo viene anche inserito il settore agricolo per cui si ipotizza la possibilità di installare del fotovoltaico, a questo livello non è però possibile calcolare l'effettivo risparmio associabile a questa azione in quanto è legata alla risposta degli addetti del settore; un coinvolgimento maggiore degli stakeholder potrebbe portare ad una riduzione dei consumi elevata, grazie ad azioni studiate in base ad un'analisi attenta della situazione esistente.

Figura 5-1: consumi energetici attesi al 2030 rispetto alle previsioni di espansione e pianificati attraverso il PAESC per settore di intervento per il comune di Arzignano (fonte: nostra elaborazione)

RIDUZIONE DEI CONSUMI ENERGETICI [MWh]



In termini di fonti energetiche rinnovabili, lo scenario obiettivo prevede che i restanti consumi degli edifici comunali siano coperti tramite l'installazione di impianti fotovoltaici, l'installazione di pannelli solari termici e con l'acquisto di energia verde, mentre, Per quanto riguarda il settore residenziale, si è invece stimata una quota da FER pari circa al 17% inoltre, anche in questo caso, attraverso il coinvolgimento diretto degli stakeholder del terziario e del produttivo, si potrebbero individuare soluzioni specifiche per il raggiungimento di quote maggiori di consumi coperti da fonti rinnovabili per tale settore. Nella seguente si riporta la situazione complessiva della quota di consumi pianificati al 2030 coperta da FER per ciascun settore di intervento.

Figura 5-2: consumi totali pianificati per settore e quota di consumi soddisfatta mediante fonti energetiche rinnovabili (FER) nel PAESC del comune di Arzignano (fonte: nostra elaborazione)

CONSUMITOTALI PIANIFICATI [MWh]

Nella tabella e nelle figure successive si riporta l'analisi dei risultati attesi dal PAESC in termini di emissioni procapite e assolute grazie ai risparmi energetici e all'approvvigionamento da FER stimati in Tabella 5-2.

Si ricorda che in base a quanto definito nel paragrafo 4.2, l'obiettivo minimo del PAESC di Arzignano è la riduzione del 40% delle emissioni assolute: tale obiettivo viene raggiunto e leggermente superato attraverso le azioni previste dal PAESC; questa riduzione percentuale si traduce in termini assoluti in 50'079 tonnellate di CO₂, ripartite tra i diversi settori secondo le quote riportate in Figura 5-3.

Tabella 5-2: emissioni di CO₂ procapite del comune di Arzignano al 2005 (BEI), previste al 2030 e pianificate al 2030 e relative emissioni evitate attraverso le azioni del PAESC per settore (fonte: nostra elaborazione)

PROIEZIONE DELLE EMISSIONI COMUNALI [t di CO ₂]						
Settori d'intervento	BEI	Previste al 2030	Pianificate al 2030	Emissioni evitate	Riduzione rispetto a previsioni	Trend BEI-2030
Terziario comunale	1'245	1'245	-1'042	2'286	184%	-184%
Terziario non comunale	24'793	24'793	14'565	10'229	41%	-41%
Edifici residenziali	41'586	42'285	9'944	32'341	76%	-76%
Illuminazione pubblica	1'185	1'238	-129	1'367	110%	-111%
Settore agricolo	1'563	2'282	2'282	0	0%	46%
Trasporti	14'787	14'787	11'288	3'499	24%	-24%
Pianificazione	0	0	0	357	100%	100%
TOTALE	85'159	86'630	36'908	50'079	58%	-57%

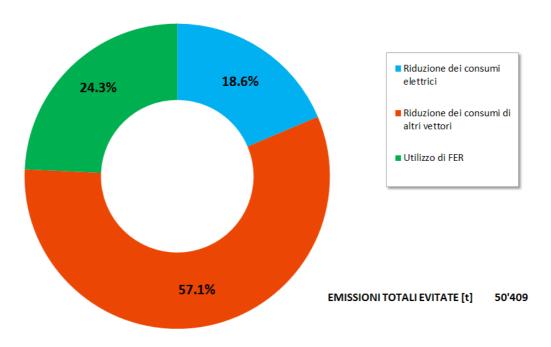
7.9%

Figura 5-3: ripartizione per settore delle emissioni totali evitate attraverso le azioni previste dal PAESC di Arzignano (fonte: nostra elaborazione)

7.0% 4.6% 20.6% Terziario comunale Edifici residenziali Illuminazione pubblica Trasporti e pianificazione

Peso pubblico

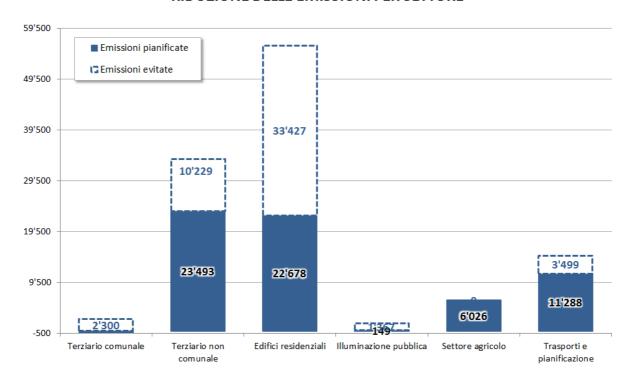
EMISSIONI TOTALI di CO, EVITATE PER SETTORE


Attraverso la riduzione delle emissioni imputabili al settore pubblico (edifici comunali per l'intera quota emissiva, illuminazione pubblica per l'87%), si può raggiungere circa il 7.9% dell'obiettivo di riduzione complessivo individuato dallo scenario obiettivo. Il settore chiave per il raggiungimento dell'obiettivo è invece il residenziale, per il quale una riduzione delle emissioni totali pari a circa il 76% di quelle previste al 2030 porta a coprire il 65% dell'obiettivo del PAESC. Segue il settore terziario, per il quale si stima sia possibile arrivare ad una riduzione delle emissioni pari al 41% che equivale a circa il 20% delle emissioni totali evitate. La riduzione del 24% delle emissioni relative ai trasporti privati e commerciali porta a raggiungere circa il 7% del risparmio totale, nel quale sono inclusi i risparmi del parco auto comunale e delle iniziative comunali di riduzione delle emissioni e di mobilità sostenibile.

Nella figura successiva si mostra come Il 76% dell'obiettivo sia coperto attraverso le emissioni evitate mediante i risparmi energetici, in particolare il 19% circa grazie alla riduzioni dei consumi elettrici e il 57% attraverso la riduzione dei consumi termici, si ricorda che il gas naturale è il vettore al quale sono imputati il 46% dei consumi energetici totali di Arzignano al 2005. Il 24% dell'obiettivo è invece raggiunto mediante l'introduzione di fonti energetiche rinnovabili in sostituzione dei vettori tradizionali per coprire il fabbisogno energetico comunale.

Figura 5-4: ripartizione per tipologia di intervento delle emissioni totali evitate attraverso le azioni previste dal PAESC di Arzignano (fonte: nostra elaborazione)

EMISSIONI TOTALI di CO₂ EVITATE PER TIPOLOGIA DI INTERVENTO



In conclusione, si riportano in Figura 5-5 le emissioni pianificate per ciascun settore di intervento e le corrispettive riduzioni ottenibili mediante le azioni previste dal PAESC: come si può notare dalla rappresentazione, si evince che gli sforzi maggiori in termini % sono richiesti ai settori pubblici (edifici comunali e illuminazione pubblica) per i quali si stimano riduzioni elevate, tenendo conto del rapporto tra emissioni evitate e emissioni pianificate.

Figura 5-5: emissioni pianificate e evitate attraverso le azioni previste dal PAESC di Arzignano per settore (fonte: nostra elaborazione)

RIDUZIONE DELLE EMISSIONI PER SETTORE

6. AZIONI DI MITIGAZIONE

6.1 SCHEDE DELLE AZIONI

In questa sezione sono riportate le schede specifiche in cui si approfondiscono le azioni previste per il territorio di Arzignano, contestualizzate rispetto alle scelte dell'AC e alle strategie individuate nel precedente paragrafo.

Le schede delle azioni risultano articolate rispetto ai seguenti contenuti:

→ tipologia dell'azione:

- puntuale: riferita alle azioni di cui si conosce l'entità dell'intervento oggetto dell'azione stessa
- statistica: riferita alle azioni la cui entità è stimata in base a dati statistici
- stimata: valutazione di massima basata sui dati di consumo rilevati nel BEI
- ≥ strategia: riporta la strategia in cui ricade l'azione

	RED	MC	EFE	EFT	IFER	SUR	MOS
•	Riqualificazione edilizia	Monitoraggio consumi	Efficienza energetica	Efficientament o tecnologico	Incremento FER	Strumenti urbanistici	Mobilità sostenibile

- 🔰 responsabile: nome dell'ufficio del Comune o del soggetto che si occuperà dell'attuazione
- ☑ grafici riassuntivi: permettono di quantificare in modo istantaneo l'azione in termini di risparmio emissivo conseguito (quota percentuale rispetto all'obiettivo e rispetto alle emissioni del relativo settore) e di periodo di tempo in cui l'azione sarà attuata. In particolare sono state definite tre fasce temporali così ripartite:

2015-2020: include le azioni che saranno attuate a breve, sono già in fase di attuazione nel territorio e in alcuni casi già attuate completamente, andando a contribuire alla riduzione di CO_2 entro il 2020

2015-2030: comprende le azioni che si applicano per tutta la durata del PAES (es. sostituzione tecnologica)

2020-2030: rientrano in questa fascia le azioni a medio e lungo termine, per le quali l'AC ha indicato una priorità inferiore

- Sintesi quantitativa: riporta per l'azione analizzata il costo stimato complessivo degli interventi, il risparmio energetico, la quantità di energia prodotta da fonti rinnovabili e l'efficacia dell'azione in termini di riduzione delle emissioni

 Costo stimato complessivo degli interventi, il risparmio degli interventi, il risparmio della prodotta da fonti rinnovabili e l'efficacia dell'azione in termini di riduzione delle emissioni.

 Costo stimato complessivo degli interventi, il risparmio della prodotta da fonti rinnovabili e l'efficacia dell'azione in termini di riduzione delle emissioni.

 Costo stimato complessivo degli interventi, il risparmio della prodotta da fonti rinnovabili e l'efficacia dell'azione in termini di riduzione delle emissioni.

 Costo stimato complessivo degli interventi, il risparmio della prodotta da fonti rinnovabili e l'efficacia dell'azione in termini di riduzione delle emissioni.

 Costo stimato complessivo della prodotta da fonti rinnovabili e l'efficacia dell'azione in termini di riduzione delle emissioni.

 Costo stimato complessivo della prodotta da fonti rinnovabili e l'efficacia dell'azione in termini di riduzione delle emissioni.

 Costo stimato complessivo della prodotta da fonti rinnovabili e l'efficacia dell'azione della prodotta dell'azione della prodotta della prodo
- ▶ breve descrizione: fornisce maggiori dettagli sull'azione, anche in termini di metodologia adottata per effettuare la stima del risparmio energetico o della quantità di energia prodotta da FER, facendo riferimento ad esempio in alcuni casi alle Schede Tecniche dell'AEEG
- ≥ ambito di applicazione e grado di incidenza: si riportano in questa sezione le eventuali assunzioni fatte per la stima dell'indicatore utilizzato come riferimento per la quantificazione degli effetti dell'azione (ad esempio: il numero di caldaie, il numero di abitazioni, etc.)
- Scosti: vengono diversificati in costi 'pubblici', sostenuti dal Comune stesso, e costi dei privati (dove è possibile una stima). Per le azioni su edifici pubblici e illuminazione pubblica (e anche parco veicolare pubblico, se si deciderà di introdurne), il costo del privato risulta essere sempre nullo, in quanto l'intera spesa verrà o è già stata sostenuta dal Comune. Per le azioni sui settori privati, implementabili dall'AC attraverso campagne di promozione/sensibilizzazione (volantinaggio, convegni, lettere ai cittadini...) le spese pubbliche risultano essere sempre pari alle spese di promozione mentre quelle dei privati risultano essere pari al costo dell'intervento
- ≥ indicatori per il monitoraggio: sono individuati alcuni target utili per effettuare un monitoraggio dell'azione durante e al termine della sua attuazione; tale attività è utile e necessaria per confrontare ed integrare i risultati osservabili mediante il software CO₂₀

Questa strutturazione delle schede tiene conto di quanto richiesto nel template che è necessario compilare online per la presentazione del proprio Piano.

Per l'attuazione delle azioni, visto il contestuale momento di crisi ed i connessi vincoli alla spesa per gli enti comunali, è necessario attingere a risorse economiche private, attraverso ESCo con il meccanismo del finanziamento tramite terzi (es. concessioni con contratti a prestazione energetica garantita o Project Financing). Ulteriori strumenti a disposizione delle attività produttive sono i bandi di finanziamenti previsti dall'Unione Europea, che attualmente sono:

European Local Energy Assistance facility (ELENA) è un programma di finanziamento europeo di BEI (Banca Europea degli Investimenti) che co-finanzia l'assistenza tecnica-legale ai processi di efficientamento energetico in ambito pubblico. L'ampia gamma di misure che possono beneficiare di tale sostegno finanziario comprendono: studi di fattibilità e di mercato; strutturazione di programmi di investimento, business plan, audit energetici, preparazione delle procedure d'appalto e degli accordi contrattuali e assegnazione della gestione del programma di investimenti per il personale di nuova assunzione. Lo scopo è di unire progetti locali in investimenti sistemici. ELENA è finanziato attraverso il Fondo europeo Energia Intelligente-Europa con un budget annuale di 15 M€.

European Energy Efficiency Fund (EEEF) programma di finanziamento europeo che punta a supportare gli obiettivi dell'Unione Europea, contribuendo con una struttura stratificata rischio/rendimento all'aumento dell'efficienza energetica e alla promozione dell'energia rinnovabile sotto forma di partnership privato-pubblico mirata. Ciò avviene in primo luogo attraverso la fornitura di finanziamenti dedicati che potranno essere diretti o in collaborazione con gli istituti finanziari. I beneficiari finali dell'EEEF sono gli enti pubblici a livello locale e regionale (tra cui i Comuni) così come le aziende pubbliche e private che operano al servizio degli enti locali quali le aziende del settore energetico dedite al pubblico servizio, fornitori di trasporto pubblico, associazioni di edilizia sociale, società che offrono servizi energetici, etc. Come nel caso di ELENA, viene cofinanziata l'assistenza tecnico-legale ed è possibile accedere in affiancamento a formule di partecipazione al finanziamento degli interventi di efficientamento.

A livello nazionale, invece, sono al momento disponibili le seguenti forme di finanziamento:

- Conto Termico 2.0 (D.M. 16/02/2016) Il decreto stabilisce le modalità di incentivazione per interventi di incremento dell'efficienza energetica e di produzione di energia termica da fonti rinnovabili (FER) e la riqualificazione dell'illuminazione interna degli edifici pubblici. E' destinato alle Pubbliche Amministrazioni, alle imprese e ai privati; i fondi a disposizione sono pari a 900 milioni di euro annui, di cui 200 destinati alla PA. Responsabile della gestione del meccanismo e dell'erogazione degli incentivi è il Gestore dei Servizi Energetici.
- Nistrutturazioni edilizie: la legge di Bilancio 2019 (n.145/2018) proroga fino al 31 dicembre 2019 (fino al 31 dicembre 2021 nel caso di condomini) le agevolazioni fiscali riservate a chi effettua interventi di riqualificazione energetica su edifici esistenti (detrazioni da Irpef o Ires) o lavori di ristrutturazione edilizia (detrazioni da Irpef)Le detrazioni, da ripartire in dieci rate annuali di pari importo, sono riconosciute nelle seguenti misure:
 - 50% delle spese sostenute fino al 31 dicembre 2017 (detrazione massima pari a 96'000 €)
 - 36% delle spese sostenute a partire dal 1° gennaio 2018 (detrazione massima pari a 48'000 €)

Nel caso di adozione di misure antisismiche su edifici ricadenti nelle zone sismiche ad alta pericolosità (zone 1, 2 e 3), è riconosciuta una detrazione pari al 50% delle spese sostenute nel periodo compreso tra il 1° gennaio 2017 e il 31 dicembre 2021, fruibile in cinque rate annuali di pari importo, per un importo complessivo massimo pari a 96'000 € per unità immobiliare.

Ristrutturazione edilizia: L'agevolazione fiscale consiste in detrazioni dall'Irpef (Imposta sul reddito delle persone fisiche) ed è concessa quando si eseguono lavori di ristrutturazione edilizia su edifici esistenti, interventi per l'adozione di misure antisismiche su costruzioni adibite ad abitazione principale o ad attività produttive che si trovano in zone sismiche ad alta pericolosità e installazioni di impianti fotovoltaici domestici, cioè posti al servizio dell'abitazione.

IMPORTI DETRAIBILI

Le detrazioni, da ripartire in <u>dieci rate annuali di pari importo</u>, sono riconosciute nelle seguenti misure:

50% delle spese sostenute fino al 31 dicembre 2019 (detrazione massima pari a 96'000 €) **36%** delle spese sostenute a partire dal 1° gennaio 2020 (detrazione massima pari a 48'000 €)

Nel caso di **adozione di misure antisismiche** su edifici ricadenti nelle zone sismiche ad alta pericolosità (zone 1, 2 e 3), è riconosciuta una detrazione pari al **50%** delle spese sostenute nel periodo compreso tra il 1° gennaio 2019 e il 31 dicembre 2021, fruibile in <u>cinque rate annuali di pari importo</u>, per un importo complessivo massimo pari a 96'000 € per unità immobiliare. La detrazione fiscale sale al 70% della spesa sostenuta, se dalla realizzazione degli interventi deriva una riduzione del rischio sismico che determina il passaggio a una classe di rischio inferiore. Aumenta all'80% se dall'intervento deriva il passaggio a due classi di rischio inferiori.

Bonus mobili:

I contribuenti che fruiscono della detrazione per interventi di recupero del patrimonio edilizio iniziati a seguito del 1° gennaio 2017 possono fruire di un'ulteriore riduzione d'imposta, pari **al 50%** delle ulteriori spese sostenute per l'**acquisto di mobili e di grandi elettrodomestici** di classe non inferiore alla A+ (nonché A per i forni) finalizzati all'arredo dell'immobile oggetto di ristrutturazione. La detrazione va ripartita in 10 quote annuali di pari importo, ed è calcolata su un ammontare complessivo non superiore a 10'000 €.

6.1.1 Le azioni del settore terziario comunale

TC.1 - INTERVENTI A FAVORE DEL RISPARMIO ENERGETICO

RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale 2015-2030

costo stimato	N.D.	
risparmio energetico	1'693	MWh/a
FER prodotta	0	MWh/a
riduzione CO ₂	308	t/a
ufficio responsabile	LAVORI P SERVIZI E AMBII	STERNI,

breve descrizione

Attraverso il progetto di project financing denominato "Servizio Energia Integrato" affidato alla ditta concessionaria Carbotermo sono stati realizzati una serie di interventi sugli edifici del Comune, sulle scuole e sugli impianti sportivi, diretti a migliorarne la prestazione energetica e ridurre i costi della bolletta energetica. pacchetto di miglioramenti dettaglio - la realizzazione di 6 impianti fotovoltaici per un totale di 100 kW (scuola Fogazzaro, scuola di Villaggio Giardino, scuola di San Zeno, San Bortolo, scuola - la realizzazione di 4 impianti solari termici per la produzione di acqua calda sanitaria (scuola di San Bortolo, campo sportivo di Villaggio Giardino, campo sportivo di San Bortolo, campo sportivo di Restena);

l'implementazione di 6 interventi di miglioramento dell'isolamento per la riduzione della dispersione termica negli edifici (scuola di San Zeno, scuola di San Rocco, scuola di Tezze, interventi sulla scuola Zanella, due scuola Motterle); - la sostituzione di 14 caldaie con nuovi generatori di calore a condensazione per il risparmio energetico (Palazzo Comunale, Villa Brusarosco, scuola di San Bortolo, scuola di Castello, scuola Fogazzaro, scuola di Villaggio Giardino, scuola di San Zeno, scuola di San Rocco, scuola di San Bortolo, scuola Zanella, stadio Dal Molin, campo sportivo di Villaggio Giardino, campo sportivo di San Bortolo, campo sportivo Restena); - la sostituzione dei corpi illuminanti con nuove lampade a basso consumo per il risparmio energetico in 5 plessi scolastici (scuola Fogazzaro, scuola di Villaggio Giardino, scuola di San Bortolo, scuola Zanella, scuola Motterle).

ambito di applicazione e grado di incidenza

Edifici di proprietà comunale e su edifici pubblici non di proprietà comunale come le caserme (Vigili del Fuoco, Guardia di Finanza e Carabinieri) e sugli edifici di aggregazione come l'oratorio.

costi

I costi sono sostenuti attraverso lo strumento del Project Financing.

indicatori di monitoraggio

Tale azione porta ad una diminuzione dei consumi elettrici e termici degli edifici sottoposti ad intervento, pertanto è necessario effettuare un costante monitoraggio di tali dati.

TC.2 - INSTALLAZIONE RIDUTTORI DI FLUSSO

RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	N.D.	€
risparmio energetico	282	MWh/a
FER prodotta	o	MWh/a
riduzione CO ₂	51	t/a
ufficio responsabile	LAVORI P	UBBLICI

breve descrizione

Installazione di riduttori di flusso idrico negli edifici comunali

ambito di applicazione e grado di incidenza

Lo scopo dell'intervento è quello di razionalizzare i consumi idrici negli edifici comunali.

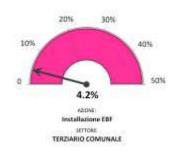
rosti

I costi risultano essere totalmente a carico del Comune.

indicatori di monitoraggio

Tale azione porta ad una diminuzione dei consumi energetici degli edifici sottoposti ad intervento, pertanto è necessario effettuare un costante monitoraggio di tali dati.

TC.3 - FOTOVOLTAICO SUGLI EDIFICI PUBBLICI



RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	N.D.	€
risparmio energetico	0	MWh/a
FER prodotta	89	MWh/a
riduzione CO ₂	52	t/a
persona responsabile	SETTORE '	TECNICO

breve descrizione

Interventi di installazione di fotovoltaico sugli edifici pubblici non ricompresi nelle azioni del Servizio Energia integrato

ambito di applicazione e grado di incidenza

Edifici comunali

costi

sono a carico dell'Amministrazione

indicatori di monitoraggio

Tali interventi portano ad un incremento di produzione di energia rinnovabile

TC.4 - ACQUISTO DI ENERGIA VERDE

RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	N.D.	€
risparmio energetico	0	MWh/a
FER prodotta	o	MWh/a
riduzione CO ₂	1'875	t/a
persona responsabile	UFFICIO T COMU	

breve descrizione

L'Amministrazione Comunale attiverà, in occasione dei nuovi appalti di fornitura in tutti i settori, procedure di acquisti "verdi" di beni e servizi, dando mandato all'ufficio competente di redigere un apposito Regolamento per gli acquisti verdi, quale strumento di consultazione per definire le procedure di acquisto, non solo sulla base del costo monetario del prodotto/servizio, ma anche sulla base degli impatti ambientali che questi possono avere nel corso del loro ciclo di vita, ed orientare gli acquisti verso prodotti compatibili con l'ambiente.

ambito di applicazione e grado di incidenza

A partire dagli edifici comunali, l'Amministrazione ha la volontà di diffondere questa pratica anche ai privati

costi

I costi risultano essere totalmente a carico del Comune.

indicatori di monitoraggio

È possibile controllare l'efficacia di questa azione monitorando la quantità effettiva di energia acquistata.

6.1.2 Le azioni del settore terziario non comunale

TER.1 - TELERISCALDAMENTO/RAFFRESCAMENTO E COGENERAZIONE A FONTI RINNOVABILI



RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	N.D.	€
risparmio energetico		MWh/a
FER prodotta		MWh/a
riduzione CO ₂		t/a
persona responsabile	UFFICIO 1 COMU	

breve descrizione

Negli anni passati, al fine di tutelare la falda acquifera che alimenta la rete idropotabile, era stato limitato lo sfruttamento della geotermia. Alla luce delle nuove tecnologie e con l'introduzione di adeguate prescrizioni (Regolamento approvato con deliberazione del Consiglio Provinciale n. 15 del 19/03/2015), è ora possibile autorizzare la posa in opera di sonde geotermiche a circuito chiuso.

Lo sfruttamento dell'energia geotermica a bassa entalpia è da considerare una delle possibili risorse per lo sviluppo sostenibile in quanto è una fonte di energia rinnovabile, pulita, gratuita e inesauribile.

L'accoppiamento di scambiatori di calore a terreno con pompe di calore rappresenta un sistema ad elevata efficienza energetica dedicato alla climatizzazione degli edifici che negli ultimi anni ha assunto una diffusione importante in molti paesi europei al cui utilizzo si affaccia anche l'Italia con un sempre crescente interesse.

I sistemi di riscaldamento e di condizionamento che sfruttano la geotermia rappresentano quindi una scelta razionale ed economica nel campo dell'utilizzo dell'energia e, considerando l'attuale crescente necessità di utilizzare, oltre al riscaldamento degli edifici, anche il raffrescamento degli ambienti, è importante in questo contesto favorire la diffusione di sistemi di climatizzazione reversibili a basso consumo energetico, quali le pompe di calore geotermiche, che consentono delle realizzazioni impiantistiche in grado di massimizzare il rendimento energetico.

ambito di applicazione e grado di incidenza

Settore terziario

costi

Non quantificabili

indicatori di monitoraggio

Monitoraggio dei consumi

TER.2 - CONDIZIONAMENTO ESTIVO IN CLASSE A

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	N.D.	€
risparmio energetico	2'914	MWh/a
FER prodotta		MWh/a
riduzione CO ₂	1'705	t/a
persona responsabile	UFFICIO TECNICO COMUNALE	

breve descrizione

Questa azione prevede l'installazione di condizionatori di classe di efficienza A di tipo split e multisplit, monoblocco o a condotto semplice. Per il calcolo del risparmio energetico si è scelto di differenziare tra apparecchi fissi (utilizzati per la climatizzazione di circa 1/3 del volume di una abitazione) e apparecchi mobili (utilizzati per la climatizzazione di un solo locale). È stato utilizzato il metodo di calcolo proposto nella Scheda Tecnica n°19T dell'AEEG.

ambito di applicazione e grado di incidenza

Complessivamente si ipotizzano risparmi di energia pari al 10% dei consumi termici del terziario non comunale. Si stima di poter intercettare almeno un buon numero di addetti del terziario grazie ai percorsi di partecipazione.

costi

Sia i costi dei privati che quelli a carico del Comune per questo tipo di azione risultano di difficile stima. Ad ogni modo si prevede una spesa pari a 2'000€ per le attività di coinvolgimento degli stakeholder.

indicatori di monitoraggio

Nel caso di coinvolgimento diretto di stakeholder, è possibile effettuare un controllo puntuale sugli interventi effettuati dalle aziende e sul trend dei relativi consumi di gas naturale.

TER.3 - RIQUALIFICAZIONE DELL'IMPIANTO DI ILLUMINAZIONE

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	N.D.	€
risparmio energetico	8'742	MWh/a
FER prodotta	O	MWh/a
riduzione CO ₂	5'114	t/a
persona responsabile	UFFICIO 1 COMU	

breve descrizione

Questa azione comprende in generale gli effetti delle attività di promozione e di coinvolgimento degli stakeholder realizzate nell'ambito del settore terziario non comunale volte ad una razionalizzazione e ad una riduzione dei consumi elettrici, mediante l'efficientamento tecnologico degli apparecchi elettrici (impianto di illuminazione, condizionamento, etc.) e l'adozione di buone norme di comportamento per la riduzione degli sprechi. La stima del risparmio energetico viene condotta in termini percentuali sulla base dei consumi elettrici riportati nel BEI nell'ipotesi di raggiungere un 10% delle principali utenze.

ambito di applicazione e grado di incidenza

Complessivamente si ipotizzano risparmi di energia elettrica pari al 10% dei consumi elettrici del terziario non comunale. Si stima di poter intercettare almeno il 10% dei consumatori data la presenza di grossi centri di vendita di tipo commerciale.

costi

Sia i costi dei privati che quelli a carico del Comune per questo tipo di azione risultano di difficile stima. Ad ogni modo si prevede una spesa pari a 1'000€ per le attività di coinvolgimento degli stakeholder.

indicatori di monitoraggio

Il monitoraggio può avvenire in generale osservando l'andamento dei consumi elettrici del settore; nel caso di coinvolgimento diretto di stakeholder, è possibile effettuare un controllo puntuale sugli interventi effettuati dalle aziende e sul trend dei relativi consumi elettrici.

TER.4 - FOTOVOLTAICO SU TERZIARIO NON COMUNALE

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	N.D.	€
risparmio energetico	0	MWh/a
FER prodotta	5'828	MWh/a
riduzione CO ₂	3'410	t/a
persona _responsabile _	UFFICIO TECNICO COMUNALE	

breve descrizione

Questa azione comprende in generale gli effetti delle attività di promozione e di coinvolgimento degli stakeholder realizzate nell'ambito del settore terziario non comunale volte ad una razionalizzazione dei consumi elettrici e all'incremento di energia rinnovabile grazie all'installazione di fotovoltaico sul terziario non comunale.

ambito di applicazione e grado di incidenza

Complessivamente si ipotizzano risparmi di energia elettrica pari al 10% dei consumi elettrici del terziario non comunale. Si stima di poter intercettare almeno il 10% dei consumatori data la presenza di grossi centri di vendita di tipo commerciale.

costi

Sia i costi dei privati che quelli a carico del Comune per questo tipo di azione risultano di difficile stima. Ad ogni modo si prevede una spesa pari a 1'000€ per le attività di coinvolgimento degli stakeholder.

indicatori di monitoraggio

Il monitoraggio può avvenire in generale osservando l'andamento dei consumi elettrici del settore e della produzione di FER; nel caso di coinvolgimento diretto di stakeholder, è possibile effettuare un controllo puntuale sugli interventi effettuati dalle aziende e sul trend dei relativi consumi elettrici.


6.1.3 Le azioni del settore residenziale

RES.1 - TELERISCALDMANETO/RAFFRESCAMENTO + COGENERAZIONEA FONTI RINNOVABILI

RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	N.D.	€
risparmio energetico	0	MWh/a
FER prodotta	o	MWh/a
riduzione CO ₂	O	t/a
persona responsabile	UFFICIO TECNICO COMUNALE	

breve descrizione

Utilizzo di nuove metodologie di riscaldamento/raffrescamento negli edifici residenziali

ambito di applicazione e grado di incidenza

Edifici residenziali

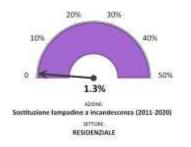
costi

Non è possibile stimare il costo degli interventi ma solo quello che l'Amministrazione può definire come quota per pubblicizzare l'azione

indicatori di monitoraggio

L'azione può essere monitorata attraverso questionari e controllando l'andamento dei consumi termicidel settore.

RES.2 - SOSTITUZIONE LAMPADE A INCANDESCENZA



RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	152'000	_ _€
risparmio energetico	938	MWh/a
FER prodotta	o	MWh/a
riduzione CO ₂	549	t/a
persona responsabile		TECNICO JNALE

breve descrizione

La sostituzione di lampade a incandescenza con lampade fluorescenti (che consumano mediamente il 75% in meno e durano 10 volte di più) permette di ottenere un risparmio energetico non indifferente, data l'enorme diffusione di tale tecnologia. Con questa azione si vuole tenere conto oltre che della sostituzione 'naturale' che avverrà entro il 2030, anche delle eventuali campagne di promozione svolte dal Comune che portano ad accelerare la sostituzione delle lampade a incandescenza. La Scheda Tecnica dell'AEEG di riferimento per la stima dei risparmi energetici è la n°o1-tris.

ambito di applicazione e grado di incidenza

Dal 2013 non è più possibile la loro vendita, dunque la loro progressiva e completa sostituzione è da considerarsi come naturale entro il 2030. Pertanto si considera un'attività di promozione da parte dell'AC intensa, che possa aumentare del 5% la sostituzione naturale.

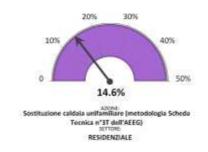
costi

Si considera un prezzo medio per lampada pari a 4.40ϵ a carico dei privati. Il costo dell'azione che dovrà essere sostenuto dal Comune sarà pari alle spese per l'attività di promozione stessa attraverso lo sportello energia comunale. Si suppone un costo per attività di promozione, aggiuntivo rispetto al costo delle lampadine, pari a $2'000\epsilon$.

indicatori di monitoraggio

L'azione può essere monitorata attraverso questionari e controllando l'andamento dei consumi elettrici del settore.

RES.3 - SOSTITUZIONE CALDAIE UNIFAMILIARI



RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2005-2030

costo stimato	9'000'000	€
risparmio energetico	33'354	MWh/a
FER prodotta	_ o _	MWh/a
riduzione CO ₂	6'067	t/a
persona _responsabile		TECNICO JNALE

breve descrizione

È un intervento diffuso su tutto il territorio comunale e agisce sulla sostituzione di caldaie a basso rendimento con caldaie ad elevata efficienza o modelli a condensazione. Il risparmio energetico è stato valutato in termini percentuali sulla base del consumo medio annuo degli impianti termici considerati, valutato a partire dalla potenza degli stessi e dal numero di ore di funzionamento standard (DPR 412/93).

ambito di applicazione e grado di incidenza

La vita media di una caldaia è pari a circa 15 anni, si stima che, attraverso la sostituzione 'naturale' e grazie all'attività di promozione del Comune che avverrà nel lungo periodo, entro il 2030 avvenga la sostituzione del 75% circa delle piccole caldaie autonome (<35kW) esistenti al 2005. Si sottolinea che tale stima è cautelativa, in quanto è possibile arrivare alla sostituzione di tutte le caldaie.

costi

È stato assunto un prezzo medio per caldaia pari a circa 2'500€, a cui è stata aggiunta una spesa minima di 1'000€ per attività di promozione da parte del Comune.

indicatori di monitoraggio

In questo caso il monitoraggio può avvenire sia verificando una flessione dei consumi termici del settore residenziale, sia attraverso il database CURIT, che permette di quantificare i nuovi impianti installati.

RES.4 - SOSTITUZIONE SERRAMENTI

RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	16'000'000	_€
risparmio energetico	9'672	MWh/a
FER prodotta	o	MWh/a
riduzione CO ₂	1'759	t/a
persona responsabile		TECNICO JNALE

breve descrizione

Questa azione tiene conto dei risparmi energetici derivanti dalla sostituzione di serramenti a vetro singolo con serramenti dotati di vetri doppi con telaio isolato. Come tutti gli interventi di riqualificazione dell'involucro, agisce sui consumi termici degli edifici. È stata utilizzata la procedura di calcolo definita nella Scheda Tecnica n°5T dell'AEEG.

ambito di applicazione e grado di incidenza

Si considera che il 75% degli edifici costruiti prima del 1992 sia ancora dotato di serramenti a vetro singolo. Si ipotizza che anche grazie all'azione di sensibilizzazione del Comune si riesca a sostituire almeno il 20% dei serramenti a vetro singolo presenti al 2015. La superficie totale sostituibile è stimata attraverso i dati di superficie media per abitazione, considerando un rapporto aero-illuminante pari a 1/8.

costi

Si ipotizza un costo al mq di infisso sostituito pari a 450€, interamente a carico dei privati. Poiché l'AC ha individuato l'azione come prioritaria l'attività di promozione dell'AC partirà nel lungo periodo e rientrerà nelle attività previste dallo Sportello Energia, con una spesa pari a 2'000€.

indicatori di monitoraggio

Il metodo più semplice per il monitoraggio di tale azione è effettuare un controllo sull'effettiva diminuzione dei consumi termici del settore residenziale.

RES.5 - RIQUALIFICAZIONE INVOLUCRO _ cappotto esterno (edifici con più di 2 piani)

RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	5'030'000	_€
risparmio energetico	17'300	MWh/a
FER prodotta	0	MWh/a
riduzione CO ₂	3'147	t/a
persona responsabile	UFFICIO TECNICO COMUNALE	

breve descrizione

La realizzazione di un cappotto esterno in un edificio permette di ottenere un risparmio nei consumi legati al soddisfacimento del fabbisogno termico dell'edificio stesso. Questo intervento risulta avere impatti differenti in termini di risparmio energetico a seconda della trasmittanza termica delle pareti, prima che venga realizzato il cappotto. Per maggiori dettagli consultare la Scheda Tecnica n°6T dell'AEEG.

ambito di applicazione e grado di incidenza

Si considera che si possa intervenire sul 75% degli edifici residenziali esistenti al 2015, tenendo conto che su alcuni edifici sono già stati effettuati interventi di cappottatura prima del 2015 e che la maggior parte degli edifici recenti risulta avere pareti efficienti in termini di resistenza termica: tramite i dati ISTAT è stata stimata la superficie di facciata degli edifici. Si è poi tenuto conto di un intervento sulle pareti in media ogni 20 anni. Considerando di tutto ciò, dato che, inoltre, si tratta di interventi piuttosto costosi e che l'AC ritiene importante agire in questo campo, si assume che entro il 2030 il 60% circa del potenziale massimo venga riqualificato.

costi

Si considera un costo al mq di cappotto realizzato pari a 75€ a carico dei privati e si prevede una spesa aggiuntiva di 1'000€ per l'attività di promozione dell'AC.

indicatori di monitoraggio

Il monitoraggio di tale azione può avvenire direttamente tenendo conto degli interventi realizzati dai privati o indirettamente valutando l'effettiva diminuzione dei consumi termici del settore residenziale.

RES.6 - RIQUALIFICAZIONE INVOLUCRO _ copertura (edifici a 1-2 piani)

RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	6'190'000	€
risparmio energetico	6'580	MWh/a
FER prodotta	o	MWh/a
riduzione CO₂	1'197	t/a
persona responsabile	UFFICIO TECNICO COMUNALE	

breve descrizione

In questa azione si tiene conto della riduzione di consumi termici che è possibile ottenere aumentando la resistenza termica delle coperture, anche attraverso interventi radicali come il rifacimento completo della copertura stessa o comunque interventi che prevedano l'aggiunta di uno strato isolante. Il risparmio energetico risulta essere variabile a seconda del tipo di copertura che viene sostituita/riqualificata. Per maggiori dettagli consultare la Scheda Tecnica n°6T dell'AEEG.

ambito di applicazione e grado di incidenza

Si considera che si possa intervenire sul 75% degli edifici residenziali esistenti al 2005, tenendo conto che su alcuni edifici sono già stati effettuati interventi di questo tipo prima del 2015 e che la maggior parte degli edifici recenti risulta avere una copertura efficiente in termini di resistenza termica: tramite i dati ISTAT è stata stimata la superficie di copertura degli edifici. Si è poi tenuto conto di un intervento nella copertura in media ogni 30 anni. Si è complessivamente ritenuto che tramite questa azione sia possibile arrivare alla realizzazione di almeno il 50% del risparmio massimo ottenibile.

costi

Si considera un costo al mq di copertura riqualificata/sostituita a carico dei privati pari a 40€ e una spesa aggiuntiva di 2'000€ è prevista per l'attività di promozione dell'AC.

indicatori di monitoraggio

Il monitoraggio di tale azione può avvenire direttamente tenendo conto degli interventi realizzati dai privati o indirettamente valutando l'effettiva diminuzione dei consumi termici del settore residenziale.

RES.7 - RIQUALIFICAZIONE INVOLUCRO _ copertura (edifici con più di 2 piani)

RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	5'100'000	€
risparmio energetico	5'344	MWh/a
FER prodotta	0	MWh/a
riduzione CO ₂	972	t/a
persona responsabile	UFFICIO TECNICO COMUNALE	

breve descrizione

In questa azione si tiene conto della riduzione di consumi termici che è possibile ottenere aumentando la resistenza termica delle coperture, anche attraverso interventi radicali come il rifacimento completo della copertura stessa o comunque interventi che prevedano l'aggiunta di uno strato isolante. Il risparmio energetico risulta essere variabile a seconda del tipo di copertura che viene sostituita/riqualificata. Per maggiori dettagli consultare la Scheda Tecnica n°6T dell'AEEG.

ambito di applicazione e grado di incidenza

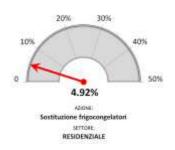
Si considera che si possa intervenire sul 75% degli edifici residenziali esistenti al 2005, tenendo conto che su alcuni edifici sono già stati effettuati interventi di questo tipo prima del 2015 e che la maggior parte degli edifici recenti risulta avere una copertura efficiente in termini di resistenza termica: tramite i dati ISTAT è stata stimata la superficie di copertura degli edifici. Si è poi tenuto conto di un intervento nella copertura in media ogni 30 anni. Si è complessivamente ritenuto che tramite questa azione sia possibile arrivare alla realizzazione di almeno il 50% del risparmio massimo ottenibile.

costi

Si considera un costo al mq di copertura riqualificata/sostituita a carico dei privati pari a 40€ e una spesa aggiuntiva di 2'000€ è prevista per l'attività di promozione dell'AC.

indicatori di monitoraggio

Il monitoraggio di tale azione può avvenire direttamente tenendo conto degli interventi realizzati dai privati o indirettamente valutando l'effettiva diminuzione dei consumi termici del settore residenziale.



RES.8 - SOSTITUZIONE FRIGOCONGELATORI

RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	6'100'000	_ €
risparmio energetico	2'989	MWh/a
FER prodotta	o	_MWh/a
riduzione CO ₂	1'749	t/a
persona responsabile	UFFICIO TECNICO COMUNALE	

breve descrizione

All'anno di riferimento del BEI la quasi totalità dei frigocongelatori presenti nelle abitazioni risulta essere di classe B o inferiore: è dunque possibile ottenere un risparmio energetico sostituendoli con frigocongelatori di classe di efficienza superiore (A+ o A++). Con questa azione si vuole tenere conto anche della sostituzione 'naturale' che è avvenuta fino al 2012 senza alcuna attività di promozione diretta da parte del Comune. Per il calcolo del risparmio energetico si fa riferimento alla Scheda Tecnica n°12 dell'AEEG e al software Kilowattene di ENEA.

ambito di applicazione e grado di incidenza

Dal 2010 è possibile comprare solo frigocongelatori di classe non inferiore alla A; inoltre la vita media di un frigocongelatore è pari a 15 anni: dunque si suppone che entro il 2030 tutti i frigocongelatori esistenti al 2005 possano essere sostituiti. Si è però ipotizzato che solo l'80% circa dei frigocongelatori venga effettivamente sostituito, dato il costo elevato.

costi

Si considera un prezzo medio per frigocongelatore pari a 650ϵ . Il costo dell'azione che dovrà essere sostenuto dal Comune sarà pari alle spese per l'attività di promozione stessa attraverso lo sportello energia comunale e pari a 2'000 ϵ .

indicatori di monitoraggio

Nel caso di organizzazione di gruppi di acquisto è bene tenere nota del numero di cittadini coinvolti. Inoltre il controllo può avvenire monitorando l'andamento dei consumi elettrici.

RES.9 - CONDIZIONAMENTO ESTIVO IN CLASSE A

RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2005-2030

costo stimato	4'560'000	_€
risparmio energetico	50	MWh/a
FER prodotta	0	MWh/a
riduzione CO ₂	29	t/a
persona responsabile	UFFICIO TECNICO COMUNALE	

breve descrizione

Questa azione prevede l'installazione di condizionatori di classe di efficienza A di tipo split e multisplit, monoblocco o a condotto semplice. Per il calcolo del risparmio energetico si è scelto di differenziare tra apparecchi fissi (utilizzati per la climatizzazione di circa 1/3 del volume di una abitazione) e apparecchi mobili (utilizzati per la climatizzazione di un solo locale). È stato utilizzato il metodo di calcolo proposto nella Scheda Tecnica n°19T dell'AEEG.

ambito di applicazione e grado di incidenza

Si suppone che il 20% delle abitazioni al 2015 sia dotato di impianto di condizionamento. Considerando una durata della tecnologia pari a 20 anni, nel periodo 2015-2030 può avvenire al massimo la sostituzione del 75% degli impianti esistenti al 2015. Malgrado l'elevato costo dell'intervento si è considerato che poco più della metà degli impianti possa essere sostituita entro il 2030.

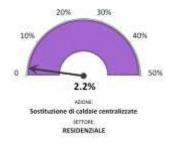
costi

È stato assunto un costo medio per installazione pari a 1'500 ϵ , a cui è stata aggiunta una spesa minima di 2'000 ϵ per attività di promozione da parte del Comune.

indicatori di monitoraggio

Risulta utile effettuare questionari periodici presso i cittadini per valutare il numero effettivo di installazioni, in quanto, analizzando i consumi elettrici totali del settore, risulta difficile verificare il risparmio energetico ottenuto.

RES.10 - SOSTITUZIONE DI CALDAIE CENTRALIZZATE



RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	8'710'000	_€
risparmio energetico	5'082	MWh/a
FER prodotta	o	MWh/a
riduzione CO₂	925	t/a
persona responsabile	UFFICIO TECNICO COMUNALE	

breve descrizione

Tale azione prevede la sostituzione degli impianti centralizzati presenti al 2015, caratterizzati da rendimenti piuttosto bassi rispetto alla media del mercato attuale, con caldaie ad alto rendimento (pari al 90%) o a condensazione (che possiedono un rendimento del 105-110%, ottenuto mediante il recupero del calore contenuto nei gas uscenti). Il risparmio energetico è stato valutato in termini percentuali sulla base del consumo medio annuo degli impianti termici considerati, valutato a partire dalla potenza degli stessi e dal numero di ore di funzionamento standard (DPR 412/93).

ambito di applicazione e grado di incidenza

Si ritiene sia possibile giungere alla sostituzione del 70% circa delle caldaie centralizzate presenti al 2015 a Arzignano, attraverso attività di promozione che potrebbero prevedere anche il coinvolgimento diretto dei proprietari.

costi

È stato assunto un prezzo medio per impianto centralizzato pari a 26'000€: tali costi (a carico dei privati) comprendono le opere di allacciamento alla rete di distribuzione del gas naturale, nel caso di cambio di vettore (ad esempio da gasolio a metano). Per quanto riguarda l'AC, si prevede una spesa per le attività di promozione pari a 1'500€.

indicatori di monitoraggio

Il monitoraggio può avvenire attraverso il coinvolgimento diretto dei proprietari, verificando una flessione dei consumi termici del settore residenziale o attraverso il database CIRCE, che permette di quantificare i nuovi impianti installati.

RES.11 - INSTALLAZIONE DI VALVOLE TERMOSTATICHE

MC EFE **EFT** IFER SUR RED

quota obiettivo raggiunta

breve descrizione

L'installazione di valvole termostatiche sui radiatori consente di regolare in ogni stanza la temperatura ideale, risparmiando circa almeno il 5% delle spese di riscaldamento. Il risparmio energetico è stato quindi valutato in tali termini, sulla base del consumo medio annuo degli impianti termici considerati, valutato a partire dalla potenza degli stessi, sulla base di un numero di ore di funzionamento standard (DPR 412/93).

quota emissioni del settore abbattute

ambito di applicazione e grado di incidenza

L'azione è stata valutata considerando gli impianti autonomi e centralizzati presenti ad Arzignano, considerando che circa la metà di essi adotti questa misura. L'attività di promozione prevista per l'AC sarà svolta attraverso l'apertura di uno Sportello Energia.

caratterizzazione temporale

2005-2030

costo stimato	1'840'000	_€
risparmio energetico	6'575	MWh/a
FER prodotta	0	MWh/a
riduzione CO ₂	1'196	t/a
persona responsabile		TECNICO JNALE

costi

È stato ipotizzato un prezzo medio per impianto pari a 250€ nel caso di impianti autonomi e pari a 1'000€ nel caso di impianti centralizzati, a cui si aggiunge una spesa pari a 1'000€ per le attività di promozione del Comune.

indicatori di monitoraggio

Il monitoraggio diretto del grado di realizzazione dell'azione può avvenire tramite la distribuzione di questionari, anche attraverso lo stesso Sportello Energia. Indirettamente potrebbe essere possibile rilevare una diminuzione dei consumi termici del settore.

RES.12 - SOSTITUZIONE CALDAIE ED IMPIANTI AUTONOMI

RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2019-2030

costo stimato	8'890'000	_€
risparmio energetico	5'419	MWh/a
FER prodotta	0	MWh/a
riduzione CO ₂	8'264	t/a
persona responsabile		TECNICO JNALE

breve descrizione

È un intervento diffuso su tutto il territorio comunale e agisce sulla sostituzione di caldaie a basso rendimento con caldaie ad elevata efficienza o modelli a condensazione. Il risparmio energetico è stato valutato in termini percentuali sulla base del consumo medio annuo degli impianti termici considerati, valutato a partire dalla potenza degli stessi e dal numero di ore di funzionamento standard (DPR 412/93).

ambito di applicazione e grado di incidenza

L'AC ha mostrato un interesse medio per tale tipologia di intervento e, dato che la vita media di una caldaia è pari a circa 15 anni, si stima che, attraverso la sostituzione 'naturale' e grazie all'attività di promozione del Comune che avverrà nel lungo periodo, entro il 2020 avvenga la sostituzione del 65% circa delle piccole caldaie autonome (<35kW) esistenti al 2005. Si sottolinea che tale stima è cautelativa, in quanto è possibile arrivare alla sostituzione di tutte le caldaie.

costi

È stato assunto un prezzo medio per caldaia pari a circa 2'500€, a cui è stata aggiunta una spesa minima di 1'000€ per attività di promozione da parte del Comune.

indicatori di monitoraggio

In questo caso il monitoraggio può avvenire sia verificando una flessione dei consumi termici del settore residenziale, sia attraverso il database CURIT, che permette di quantificare i nuovi impianti installati.

RES.13 - INSTALLAZIONE DI POMPE DI CALORE

RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute -

caratterizzazione temporale

2015 - 2030

costo stimato	N.D.	_ €
risparmio energetico	14'238	MWh/a
FER prodotta	3'750	MWh/a
riduzione CO ₂	858	t/a
persona responsabile	UFFICIO TECNICO COMUNALE	

breve descrizione

Negli anni passati, al fine di tutelare la falda acquifera che alimenta la rete idropotabile, era stato limitato lo sfruttamento della geotermia. Alla luce delle nuove tecnologie e con l'introduzione di adeguate prescrizioni (Regolamento approvato con deliberazione del Consiglio Provinciale n. 15 del 19/03/2015), è ora possibile autorizzare la posa in opera di sonde geotermiche a circuito chiuso.

Lo sfruttamento dell'energia geotermica a bassa entalpia è da considerare una delle possibili risorse per lo sviluppo sostenibile in quanto è una fonte di energia rinnovabile, pulita, gratuita e inesauribile.

L'accoppiamento di scambiatori di calore a terreno con pompe di calore rappresenta un sistema ad elevata efficienza energetica dedicato alla climatizzazione degli edifici che negli ultimi anni ha assunto una diffusione importante in molti paesi europei al cui utilizzo si affaccia anche l'Italia con un sempre crescente interesse.

I sistemi di riscaldamento e di condizionamento che sfruttano la geotermia rappresentano quindi una scelta razionale ed economica nel campo dell'utilizzo dell'energia e, considerando l'attuale crescente necessità di utilizzare, oltre al riscaldamento degli edifici, anche il raffrescamento degli ambienti, è importante in questo contesto favorire la diffusione di sistemi di climatizzazione reversibili a basso consumo energetico, quali le pompe di calore geotermiche, che consentono delle realizzazioni impiantistiche in grado di massimizzare il rendimento energetico.

ambito di applicazione e grado di incidenza

Settore residenziale

cost

non quantificabili

indicatori di monitoraggio

Il monitoraggio dei consumi

RES.14 - DIFFUSIONE RIDUTTORI DI FLUSSO E DEI CONSUMI DELL'ILLUMINAZIONE

RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	N.D. €	
risparmio energetico	- MWh/a	1
FER prodotta	- MWh/a	ì
riduzione CO₂	- t/a	
persona responsabile	UFFICIO TECNICO	

breve descrizione

L'installazione di riduttori di flusso e l'utilizzo di lampade a basso consumo possono far diminuire i consumi energetici del settore residenziale oltre a portare un beneficio ambientale in senso più ampio.

ambito di applicazione e grado di incidenza

Il settore coinvolto è il residenziale, i cittadini devono essere sensibilizzati dall'Amministrazione con delle politiche specifiche.

costi

Non è possibile quantificare i costi di intervento in quanto sono strettamente dipendenti da quello che i singoli cittadini decidono di fare.

indicatori di monitoraggio

Il monitoraggio diretto del grado di realizzazione dell'azione può avvenire tramite la distribuzione di questionari Indirettamente potrebbe essere possibile rilevare una diminuzione dei consumi elettrici del settore.

RES.15 - INSTALLAZIONE DI IMPIANTI FOTOVOLTAICI (edifici residenziali a 1-2 piani)

RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	20'000'00 0	€
risparmio energetico	0	MWh/a
FER prodotta	6'452	_MWh/a
riduzione CO ₂	3'774	t/a
persona responsabile	UFFICIO TECNICO COMUNALE	

breve descrizione

L'installazione di impianti fotovoltaici porta ad avere un risparmio emissivo dato dalla produzione locale di energia elettrica. Si considera l'installazione di impianti da 3 kW sugli edifici monobifamigliari (1-2 piani) e da 4.5 kW sui condomini (numero di piani maggiore di 2), avendo questi ultimi consumi elettrici maggiori. Si fa riferimento alla Scheda Tecnica n°7 dell'AEEG.

ambito di applicazione e grado di incidenza

Si stima che presso il comune di Arzignano il 40% degli edifici possieda un buon orientamento; della restante parte si è comunque scelto di considerarne il 25%. Una riduzione ulteriore pari al 90% si applica per i condomini, per i quali l'installazione risulta vincolata dalla necessità di un accordo condominiale sull'intervento. Infine, dato l'elevato costo dell'intervento, si è supposto che solo la metà della potenza totale installabile venga effettivamente installata entro il 2030. Per quanto riguarda le installazioni già avvenute sono stati considerati in modo puntuale i dati di ATLASOLE relativi agli impianti con potenza inferiore a 20 kWp, a meno degli impianti installati su edifici comunali.

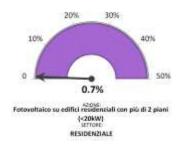
costi

Si considera un prezzo medio cautelativo pari a 4'000 €/kW installato, anche se attualmente il costo di tale intervento è molto minore. Una spesa aggiuntiva di 2'000 € è prevista per l'attività di promozione dell'AC.

indicatori di monitoraggio

Il monitoraggio è effettuabile tenendo sotto controllo il numero e la potenza degli impianti installati presso il comune di Arzignano attraverso il database ATLASOLE, verificando l'effettiva diminuzione dei consumi elettrici.

RES.16 - INSTALLAZIONE DI IMPIANTI FOTOVOLTAICI (edifici con più di 2 piani)



RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	N.D.	_€
risparmio energetico	0	MWh/a
FER prodotta	483	MWh/a
riduzione CO ₂	282	t/a
persona responsabile	UFFICIO TECNICO COMUNALE	

breve descrizione

L'installazione di impianti fotovoltaici porta ad avere un risparmio emissivo dato dalla produzione locale di energia elettrica. Si considera l'installazione di impianti da 3 kW sugli edifici monobifamigliari (1-2 piani) e da 4.5 kW sui condomini (numero di piani maggiore di 2), avendo questi ultimi consumi elettrici maggiori. Si fa riferimento alla Scheda Tecnica n°7 dell'AEEG.

ambito di applicazione e grado di incidenza

Si stima che presso il comune di Arzignano il 40% degli edifici possieda un buon orientamento; della restante parte si è comunque scelto di considerarne il 25%. Una riduzione ulteriore pari al 90% si applica per i condomini, per i quali l'installazione risulta vincolata dalla necessità di un accordo condominiale sull'intervento. Infine, dato l'elevato costo dell'intervento, si è supposto che solo la metà della potenza totale installabile venga effettivamente installata entro il 2030. Per quanto riguarda le installazioni già avvenute sono stati considerati in modo puntuale i dati di ATLASOLE relativi agli impianti con potenza inferiore a 20 kWp, a meno degli impianti installati su edifici comunali.

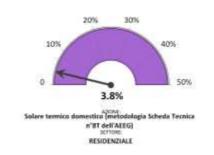
costi

Si considera un prezzo medio cautelativo pari a 4'000 €/kW installato, anche se attualmente il costo di tale intervento è molto minore. Una spesa aggiuntiva di 2'000 € è prevista per l'attività di promozione dell'AC.

indicatori di monitoraggio

Il monitoraggio è effettuabile tenendo sotto controllo il numero e la potenza degli impianti installati presso il comune di Arzignano attraverso il database ATLASOLE, verificando l'effettiva diminuzione dei consumi elettrici.

RES.17 - INSTALLAZIONE DI PANNELLI SOLARI TERMICI



RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	N.D.	_€
risparmio energetico	0	MWh/a
FER prodotta	8'644	MWh/a
riduzione CO ₂	1'572	t/a
persona responsabile	UFFICIO TECNICO COMUNALE	

breve descrizione

Prevede l'installazione di pannelli solari termici, utilizzati per soddisfare il fabbisogno di acqua calda sanitaria, in sostituzione delle caldaie o dei boiler elettrici esistenti: il risparmio energetico è quindi dato dai mancati consumi di tali impianti. Si considera una dimensione media dell'impianto pari a 4.6 mq. Per la procedura di calcolo si fa riferimento alla Scheda Tecnica n°8T dell'AEEG.

ambito di applicazione e grado di incidenza

Si stima che presso il comune di Arzignano il 40% degli edifici possieda un buon orientamento; della restante parte si è comunque scelto di considerarne il 50%. Non sono stati considerati i condomini (edifici con numero di piani maggiore di 2). Infine, dato l'elevato costo dell'intervento, si è supposto che solo la metà della potenza totale installabile venga effettivamente installata entro il 2030.

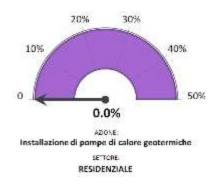
costi

È stato ipotizzato un costo al mq a carico dei privati pari a 1'000€ a cui sono stati aggiunti 1'000€ per la copertura delle spese di promozione dell'AC.

indicatori di monitoraggio

Gli effetti di tale azione sono traducibili in una diminuzione dei consumi termici del settore residenziale. È inoltre possibile effettuare un controllo diretto attraverso le comunicazioni di inizio lavori dei cittadini coinvolti.

RES.18 - INSTALLAZIONE DI POMPE DI CALORE GEOTERMICO



RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	N.D.	_€
risparmio energetico	0	MWh/a
FER prodotta	0	MWh/a
riduzione CO ₂	O	t/a
persona responsabile	UFFICIO TECNICO COMUNALE	

breve descrizione

Negli anni passati, al fine di tutelare la falda acquifera che alimenta la rete idropotabile, era stato limitato lo sfruttamento della geotermia. Alla luce delle nuove tecnologie e con l'introduzione di adeguate prescrizioni (Regolamento approvato con deliberazione del Consiglio Provinciale n. 15 del 19/03/2015), è ora possibile autorizzare la posa in opera di sonde geotermiche a circuito chiuso.

Lo sfruttamento dell'energia geotermica a bassa entalpia è da considerare una delle possibili risorse per lo sviluppo sostenibile in quanto è una fonte di energia rinnovabile, pulita, gratuita e inesauribile.

L'accoppiamento di scambiatori di calore a terreno con pompe di calore rappresenta un sistema ad elevata efficienza energetica dedicato alla climatizzazione degli edifici che negli ultimi anni ha assunto una diffusione importante in molti paesi europei al cui utilizzo si affaccia anche l'Italia con un sempre crescente interesse.

I sistemi di riscaldamento e di condizionamento che sfruttano la geotermia rappresentano quindi una scelta razionale ed economica nel campo dell'utilizzo dell'energia e, considerando l'attuale crescente necessità di utilizzare, oltre al riscaldamento degli edifici, anche il raffrescamento degli ambienti, è importante in questo contesto favorire la diffusione di sistemi di climatizzazione reversibili a basso consumo energetico, quali le pompe di calore geotermiche, che consentono delle realizzazioni impiantistiche in grado di massimizzare il rendimento energetico.

ambito di applicazione e grado di incidenza

Settore residenziale

costi

Non quantificabili

indicatori di monitoraggio

Monitoraggio dei consumi

6.1.4 Le azioni del settore illuminazione pubblica

IP.1 - EFFICIENTAMENTO DELL'ILLUMINAZIONE PUBBLICA

RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	1'312'150	€
risparmio energetico	311	MWh/a
FER prodotta	o	MWh/a
riduzione CO ₂	182	t/a
persona responsabile	SETTORE	TECNICO

breve descrizione

I PICIL (Piano dell'illuminazione per il contenimento dell'inquinamento luminoso e il risparmio energetico) descrive gli interventi di efficientamento degli impianti di pubblica illuminazione (installazione riduttori di flusso luminoso, sostituzione lampade, sostituzione corpi illuminanti) e la sostituzione dei corpi illuminanti necessaria per ridurre l'inquinamento luminoso.

ambito di applicazione e grado di incidenza

Gli interventi previsti al patrimonio della Pubblica illuminazione hanno le seguenti caratteristiche hanno lo scopo di ridurre i consumi di illuminazione e migliorare la qualità dell'illuminazione sul territorio comunale.

costi

L'intervento sarà realizzato attraverso il finanziamento proprio.

indicatori di monitoraggio

Tali interventi portano ad una diminuzione dei consumi elettrici dei punti luce, pertanto è necessario effettuare un costante monitoraggio di tali dati.

IP.2 - ACQUISTO DI ENERGIA VERDE

RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2005-2030

costo stimato	N.D.	€
risparmio energetico	-	MWh/a
FER prodotta	2'025	MWh/a
riduzione CO ₂	1'185	t/a
persona	SETTORE 1	TECNICO

responsabile

breve descrizione

Acquisto dell'energia elettrica utilizzata per la pubblica illuminazione esclusivamente da fonti rinnovabili. Attraverso specifici contratti di fornitura si può certificare che l'energia utilizzata proviene esclusivamente da fonti rinnovabili

ambito di applicazione e grado di incidenza

I consumi dell'illuminazione pubblica possono essere ridotti attraverso diverse strategie, come per esempio l'ammodernamento degli impianti, l'utilizzo di corpi illuminanti a basso consumo, l'installazione di riduttori di flusso, ecc. e in gran parte sono già stati previsti nel PICIL (Piano dell'Illuminazione per il Contenimento dell'Inquinamento Luminoso e il Risparmio Energetico). La sostituzione totale delle fonti di energia con energia rinnovabile permette invece di massimizzare il risultato azzerando completamente l'emissione di CO2 corrispondente

costi

L'intervento sarà finanziato dall'Amministrazione comunale.

indicatori di monitoraggio

Costante monitoraggio della spesa imputabile all'illuminazione pubblica.

6.1.5 Le azioni del settore dei veicoli comunali e mobilità sostenibile

VC.1 - RINNOVO PARCO AUTOVEICOLARE

RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale 2015-2030

costo stimato	N.D.	€
risparmio energetico	3	MWh/a
FER prodotta	О	MWh/a
riduzione CO ₂	1	t/a
persona responsabile	UFFICIO 1 COMU	

breve descrizione

Nel periodo 2015-2030 avviene una sostituzione graduale degli autoveicoli con autoveicoli caratterizzati da minori emissioni. In questa azione si comprendono sia le riduzioni emissive rispetto al parco veicolare al 2015 sia lo sconto emissivo calcolato rispetto agli incrementi emissivi dovuti all'aumento demografico previsto per il territorio di Arzignano.

ambito di applicazione e grado di incidenza

La vita media di un autoveicolo è pari a 15 anni quindi è presumibile che entro il 2030 avvenga la sostituzione dell'intero parco auto presente al 2015; tuttavia, vista la situazione attuale si è ritenuto opportuno correggere al ribasso tale stima, ipotizzando che al 2030 solo il 72% degli autoveicoli sarà caratterizzato da un'età inferiore a 15 anni.

costi

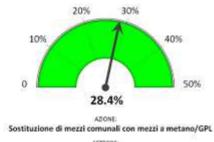
La stima dei costi di tale azione è puramente indicativa, vista la varietà del mercato. Si ipotizza poi un costo per l'attività di promozione pari a 1'000 € per Comune

indicatori di monitoraggio

Tale azione può essere costantemente monitorata grazie alle relazioni annuali diffuse dall'ACI, relative ai mezzi in circolazione a livello comunale.

VC.2 - SOSTITUZIONE DI MEZZI COMUNALI CON MEZZI METANO/GPL

RED MC EFE EFT IFER SUR MOS


quota obiettivo raggiunta

Sostituzione di mezzi comunali con mezzi a metano/GPL

VEICOLI COMUNALI E MOBILITA' SOSTENIBILE

quota emissioni del settore abbattute

SETTORE:
VEICOLI COMUNALI E MOBILITA' SOSTENIBILE

caratterizzazione temporale

2015-2030

costo stimato	N.D.	€
risparmio	89	MWh/a
energetico		
FER prodotta	0	MWh/a
riduzione CO ₂	65	t/a
persona responsabile	UFFICIO TECNICO COMUNALE	

breve descrizione

Con questa azione si intende lo stimolo al trasporto pubblico a metano su scala locale (bus navetta frazioni-scuole-z.i. attivo nelle ore di punta e durante gli orari dei mercati settimanali)

ambito di applicazione e grado di incidenza

La stima viene effettuata in base ai consumi relativi al settore in oggetto.

costi

Non quantificabili

indicatori di monitoraggio

Tale azione può essere costantemente monitorata rilevando gli effettivi consumi dei nuovi mezzi.

MOBS.1 - ISTITUZIONE PEDIBUS_percorsi natura

RED MC EFE EFT IFER SUR MOS

Insieme all'implementazione del sistema delle piste ciclabili può

essere un ottimo volano ed uno stimolo all'approccio sostenibile

quota obiettivo raggiunta

Arce a maggior naturanta presenti

ambito di applicazione e grado di incidenza

Aree a maggior naturalità presenti sul territorio comunale

costi

breve descrizione

al territorio,

Il costo di quest'azione risulta essere di difficile stima

quota emissioni del settore abbattute

indicatori di monitoraggio

A iniziativa in atto, è necessario monitorare il numero di persone che aderiscono, anche tramite questionari sul loro modo abituale di vivere il territorio ed il tempo libero

caratterizzazione temporale 2015-2030

costo stimato	N.D.	
risparmio energetico	467	MWh/a
FER prodotta	o	MWh/a
riduzione CO ₂	119	t/a
ufficio responsabile	UFFICIO T COMU	

MOBS.2 - SERVIZIO PEDIBUS_percorsi sicuri

RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale 2015-2030

costo stimato	N.D.
risparmio energetico	233 MWh/a
FER prodotta	25 MWh/a
riduzione CO ₂	59 t/a
ufficio responsabile	UFFICIO TECNICO COMUNALE

breve descrizione

Con questa azione si vuole tenere conto delle mancate emissioni dei trasporti privati dovute all'istituzione del servizio pedibus per gli alunni delle Scuole. Malgrado questa attività non risulti essere significativa in termini di risparmi emissivi potenzialmente conseguibili, presenta diversi vantaggi per la salute e l'educazione dei bambini.

ambito di applicazione e grado di incidenza

La stima è stata condotta considerando una distanza media casascuola pari a 300 metri e supponendo che, grazie all'adesione delle famiglie al servizio, tali tragitti non vengano più percorsi dal 5% delle autovetture private presenti ad Arzignano

costi

Il costo di quest'azione risulta essere di difficile stima, trattandosi di un servizio spesso svolto da personale volontario.

indicatori di monitoraggio

A iniziativa in atto, è necessario monitorare il numero di alunni che aderiscono, anche tramite questionari sul loro modo abituale di raggiungere la scuola.

MOBS.3 - REALIZZAZIONE PISTE CICLABILI

RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	N.D.
risparmio energetico	233 MWh/a
FER prodotta	o MWh/a
riduzione CO ₂	59 t/a
ufficio responsabile	UFFICIO TECNICO COMUNALE

breve descrizione

Con questa azione si vuole tenere conto delle mancate emissioni dei trasporti privati dovute all'utilizzo di piste ciclopedonali per gli spostamenti all'interno del territorio comunale in sostituzione delle autovetture.

ambito di applicazione e grado di incidenza

Implementazione dell'esistente anche con le aree a maggiore naturalità

costi

L'efficacia di tale azione non dipende direttamente dall'attività del Comune e il costo risulta di difficile stima.

indicatori di monitoraggio

Tramite indagini presso i cittadini o rilevamenti diretti presso le piste ciclabili realizzate, è possibile ricostruire il numero di persone che fanno uso delle piste realizzate.

VC.3 - UTILIZZO DI BIOCOMBUSTIBILI

RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	N.D.	
risparmio energetico	o MWh/a	
FER prodotta	25 MWh/a	
riduzione CO ₂	6 t/a	
ufficio responsabile	UFFICIO TECNICO COMUNALE	

breve descrizione

La Direttiva 2009/28/CE ha fissato un obiettivo obbligatorio del 10% che tutti gli Stati membri dovranno raggiungere per quanto riguarda la quota di biocarburanti sul consumo di benzine e diesel per autotrazione entro il 2030.

ambito di applicazione e grado di incidenza

Si considera che al 2030 il 10% dei consumi di benzina e gasolio dei veicoli comunali sia coperto mediante l'utilizzo di biocombustibili.

costi

L'efficacia di tale azione non dipende direttamente dall'attività del Comune e il costo risulta di difficile stima.

indicatori di monitoraggio

Il monitoraggio viene condotto valutando l'andamento dei consumi dei due settori considerati.

6.1.6 Le azioni del settore dei trasporti privati e commerciali

TPC. 1 - RINNOVO PARCO AUTOVEICOLARE

KED

RED MC EFE

EFT IFER

FER SUR

MOS

quota obiettivo raggiunta

breve descrizione

Con questa azione si vuole tenere conto delle mancate emissioni dei trasporti privati dovute al rinnovo del parco autoveicolare

ambito di applicazione e grado di incidenza

Questo tipo di azione è stimata sul parco auto circolante desunto dai dati ACI e si ipotizza una sostituzione dei veicoli di immatricolazione meno recente.

costi

Non è possibile una stima puntuale dei costi.

indicatori di monitoraggio

Composizione del parco auto circolante nel Comune di Arzignano.

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	N.D.	
risparmio energetico	11'370	MWh/a
FER prodotta	2'361	MWh/a
riduzione CO ₂	3'499	t/a
persona responsabile	UFFICIO T	

TPC. 2 – PIANO URBANO DELLA MOBILITA'

RED

MC EFE EFT IFER SUR A

breve descrizione

Con questa azione si vuole tenere conto delle emissioni imputabili al settore dei trasporti privati e commerciali che si possono ottenere dalla riduzione del 5% delle emissioni del comparto tramite l'attuazione del piano della mobilità e quindi di circa 740 tonnellate di CO₂.

ambito di applicazione e grado di incidenza

Parco auto circolante

costi

Non è possibile una stima puntuale dei costi.

indicatori di monitoraggio

quantificazione delle emissioni del settore trasporti

6.1.7 Le azioni del settore della pianificazione e della sensibilizzazione

PS.1 - MESSA A DIMORA DI NUOVI ALBERI

RED MC EFE EFT IFER SUR MOS

quota obiettivo raggiunta

quota emissioni del settore abbattute

caratterizzazione temporale

2015-2030

costo stimato	N.D.	
risparmio energetico	0	MWh/a
FER prodotta		MWh/a
riduzione CO ₂	357	t/a
ufficio responsabile	UFFICIO TECNICO COMUNALE	

breve descrizione

Le foreste urbane possono ridurre la CO₂ atmosferica in due modi. Finché le piante crescono, l'assorbimento di CO₂ attraverso la fotosintesi è maggiore della quantità rilasciata mediante la respirazione, ottenendo quindi una riduzione netta di CO₂. Inoltre gli alberi attorno agli edifici possono ridurre la domanda di riscaldamento e condizionamento, riducendo così le emissioni associate alla produzione di energia elettrica. D'altra parte però viene rilasciata CO₂ dai veicoli, dalle motoseghe e da altre attrezzature durante i processi di impianto e manutenzione degli alberi.

Un altro fattore di emissione di ${\rm CO_2}$ è costituito dalla decomposizione della biomassa legnosa dopo l'inevitabile morte degli alberi, nondimeno però una foresta urbana può costituire un'importante riserva di ${\rm CO_2}$ e soprattutto con l'aumento delle chiome e dell'ombreggiamento, può ridurre la domanda di energia per riscaldamento e condizionamento. La piantagione di nuovi alberi in città rappresenta perciò un punto di stoccaggio della ${\rm CO_2}$, tanto più efficiente quanto più l'albero va verso la maturità. Prudenzialmente potremmo assumere, considerando la diversificazione delle specie, la diversa collocazione, le attività di contenimento e potatura, la mortalità soprattutto nei primi anni di vita, che la piantagione di un albero in zona in precedenza non arborata possa stoccare 12 kg ${\rm CO_2}$ all'anno.

ambito di applicazione

Spazi pubblici e privati

costi

indicatori di monitoraggio

Numero di alberi presenti sul territorio comunale

strumento di attuazione

Settore Lavori Pubblici

PS.2 - PROMOZIONE DI STILI DI VITA SOSTENIBILE

RED MC EFE EFT IFER SUR MOS

breve descrizione

In questa scheda vengono elencate le azioni che possono essere definite di pianificazione territoriale che non hanno delle ricadute dirette di diminuzione della produzione di anidride carbonica o che hanno degli apporti di risparmio energetico e di riduzione di CO2 non quantificabili e sono:

- Razionalizzazione nella raccolta dei rifiuti: aumento della percentuale della percentuale di raccolta differenziata:
- Produzione di biometano da FORSU;
- Valorizzazione della produzione orticola, km o, orti urbani;
- Promozione short rotation, valorizzazione biomasse endogene;
- Riqualificazione edilizia privata mediante detrazione del 55%
- Adeguamento deli impianti di illuminazione esterna privati (L.R: 17/2009);
- Incentivazione impianti di combustione a legna con filtri per le polveri sottili;
- Valutazione della possibilità di realizzare impianti fotovoltaici condivisi;
- Sfruttamento biogas dall'impianto di depurazione;
- Valorizzazione delle fonti rinnovabili nell'impresa agricola;
- Sviluppo delle fonti rinnovabili nel settore residenziale;
- Interventi strutturali sulle aziende zootecniche

ambito di applicazione

Efficientamento energetico, riduzione della produzione di CO2, promozione di stili di vita sostenibile

costi

Non sono quantificabili i costi dei singoli interventi, si ipotizza di utilizzare risorse comunali per la pubblicizzazione delle azioni

indicatori di monitoraggio

Percentuale di raccolta differenziata, nascita di orti urbani, accesso alle detrazionio

strumento di attuazione

Settore Lavori Pubblici

PS.3 - SENSIBILIZZAZIONE_MOBILITA'

RED MC EFE EFT IFER SUR MOS

breve descrizione

In questa scheda vengono proposte le azioni di sensibilizzazioni legate all'ambito della mobilità che hanno lo scopo di ridurre il parco auto circolante, incrementare l'uso della mobilità dolce e a disincentivare l'uso dell'auto propria. Le azioni sono:

- Mercatini e produzioni a km 0
- Case dell'acqua e del latte
- Incentivazione attività di Mobility Management per le aziende
- Installazione distributori carburante a basso impatto ambientale
- Pendolare in prova (mese di abbonamento gratuito per l'utilizzo dei mezzi pubblici locali)
- Stimolo al trasporto pubblico su scala provinciale (aumento frequenza corse, itinerari speciali mari e monti)
- Attività di Mobility Management per i dipendenti comunali: "ticket trasporto" o "ticket mobilità" spendibili per tutte le forme di mobilità convenzionate
- Giornate ecologiche per vivere le piazze, i parchi e il territorio (riduzione degli spostamenti)
- Istituzione del car sharing
- Aumento aree pedonalizzate
- Graduale estensione areale e temporale delle limitazioni al movimento di alcune categorie di veicoli

ambito di applicazione

Promozione di stili di vita sostenibili, riduzione del parco auto circolante

costi

Non sono quantificabili costi diversi da quelli dell'attività promozionale comunale

indicatori di monitoraggio

Per la realizzazione di questo tipo di azioni è importante porsi degli obiettivi su cui incardinare il sistema di indicatori che per esempio possono essere:

- Numero di mercati di prodotti a km o tenuti nell'anno
- Diffusione di case dell'acqua e del latte nei diversi quartieri cittadini
- Pendolare in prova: incremento dei pendolari a seguito degli abbonamenti erogati gratuitamente
- Numero delle giornate ecologiche tenute all'anno
- Numero delle postazioni di car sharing sul territorio
- Estensione delle aree pedonali presenti sul territorio comunale

A partire dallo stato di fatto le azioni, per avere un buon riscontro, devono denotare degli incrementi.

strumento di attuazione

Uffici comunali

PS.4 - ATTIVAZIONE DI UNO SPORTELLO ENERGIA

RED MC EFE EFT IFER SUR MOS

breve descrizione

Lo Sportello Energia è lo strumento individuato per promuovere le azioni del PAESC presso i privati. Nelle occasioni formali ed informali di condivisione degli obiettivi del Piano con imprese e cittadini, è opinione diffusa che una delle principali barriere, se non la principale, sia la scarsa conoscenza di soluzioni e benefici e la confusione tra le alternative proposte. Lo Sportello è lo strumento che il Comune può mettere a disposizione per fornire un primo orientamento non viziato da conflitti d'interesse e quindi più facilmente destinatario di fiducia.

Si prevede l'attivazione dello Sportello Energia che svolga le seguenti attività:

- > promuovere azioni che favoriscano un ambiente globalmente sostenibile;
- → fornire informazioni su edilizia sostenibile e diffonderne la pratica;
- >> promuovere l'uso efficiente delle risorse energetiche e ambientali e sviluppare le fonti energetiche rinnovabili (biomasse, geotermia, solare termico e fotovoltaico);
- 🔰 favorire il miglioramento dell'efficienza energetica nei settori residenziale, terziario e industriale;
- ≥ stimolare il contenimento dei consumi idrici e del suolo naturale, l'abbattimento dei carichi sull'ambiente derivati dalle costruzioni;
- → fornire informazioni su edilizia sostenibile negli ambiti delle aziende agricole e zootecniche presenti sul territorio

Si prevede di utilizzare forma comunicazione anche in modalità web al fine di dare un riscontro tempestivo alla richiese dei residenti e alle attività produttive in loco. Di seguito si riportano alcune interfacce tipo:

ambito di applicazione

Coinvolgimento degli stakeholder locali

costi

Risorse interne. Per l'attuazione degli strumenti è necessario prevedere eventuali consulenze esterne specifiche.

indicatori di monitoraggio

Attivazione dello Sportello Energia.

strumento di attuazione

Elaborazione di pagine web dedicate

PS.5 - AGGIORNAMENTO DEL REGOLAMENTO EDILIZIO o DELL'ALLEGATO ENERGETICO

RED MC EFE EFT IFER **SUR** MOS

breve descrizione

Poiché il Regolamento Edilizio Comunale rappresenta lo strumento che maggiormente definisce le modalità e le prassi con le quali realizzare le nuove costruzioni e ristrutturazioni degli edifici, è necessario aggiornare l'attuale strumento rispetto alle nuove normative nazionali e regionali. Pertanto si propone di procedere ad un aggiornamento (in particolare per le parti in materia di efficienza energetica) del Regolamento Edilizio, funzionale ad attualizzare e specificare i criteri energetico-ambientali già in essere in relazione alle sopravvenute disposizioni legislative, definendo lo specifico livello di cogenza/premialità progressiva delle diverse disposizioni sul tema in oggetto, mantenendo le necessarie flessibilità di utilizzo.

I temi che maggiormente potrebbero essere approfonditi sono:

- > prescrizioni specifiche in modo da consentire una riduzione del consumo di combustibile per il raffrescamento estivo e il riscaldamento invernale
- incentivazioni rispetto alle classe energetica raggiunta
- semplificazione procedurale per interventi sulle FER

La necessità di revisione del Regolamento Edilizio è sottolineata anche dal DLGS 28/2011 che introduce con gradualità temporale norme più restrittive di efficientamento energetico del comparto edilizio. Tale normativa tende a perseguire l'obiettivo del miglioramento delle prestazioni minime richieste in termini di fabbisogno e produzione di energia da fonti rinnovabili. Si citano ad esempio le prescrizioni dell'Allegato 3 del DLGS 28/2011 che prevedono l'obbligatorietà della copertura con FER del 20% del fabbisogno termico (acqua calda sanitaria, riscaldamento e raffrescamento) dal maggio 2012 (che diventano 35% dal gennaio 2014 e 50% dal gennaio 2017) ed introducono anche l'obbligatorietà di rinnovabili elettriche in misura minima di 1 kW per 80 mq a partire dal maggio 2012 (che diventano ogni 65 mq dal gennaio 2014 e 50 mq dal gennaio 2017).

Sarà inoltre elaborato un abaco indicativo delle possibili soluzioni tecnologiche per l'efficientamento e al produzione di FER applicabili nel contesto territoriale.

ambito di applicazione

Aggiornamento del RE rispetto alla normativa vigente

costi

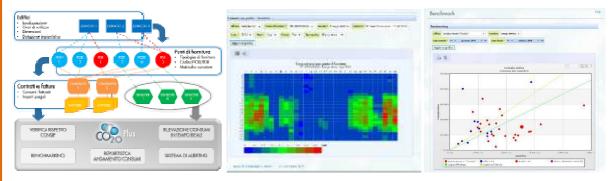
Risorse interne per effettuare i tavoli di lavoro. Per l'attuazione degli strumenti è necessario prevedere eventuali consulenze esterne specifiche.

indicatori di monitoraggio

Approvazione del allegato energetico al RE da parte dell'AC.

strumento di attuazione

Allegato energetico al Regolamento Edilizio


PS.6 - SISTEMI DI MONITORAGGIO DEI CONSUMI ENERGETICI

RED MC EFE EFT IFER **SUR** MOS

breve descrizione

L'Amministrazione Comunale ha colto l'importanza di conoscere meglio i consumi delle utenze di propria competenza e quindi ha deciso di avviare campagne di monitoraggio dei propri consumi termici ed elettrici al fine di individuare anomalie ed effettuare valutazioni di tipo economico relativamente alle tariffe offerte dai diversi operatori. L'obiettivo oltre al monitoraggio dei consumi, il Comune ritiene importante anche i seguenti servizi attivabili congiuntamente:

- creare un'anagrafica degli edifici, dei punti di fornitura e dei contratti in essere;
- visualizzare l'andamento dei consumi rilevati in tempo reale nel caso di consumi elettrici e pari a 1 ora nel caso di consumi di gas naturale, avendo la possibilità di analizzare i consumi elettrici dati aggregandoli per fascia di consumo (F1, F2, F3);
- attivare un sistema di alerting che segnali anomalie nei consumi o superamento di soglie predefinite, anche attraverso l'invio di e-mail;
- analizzare i consumi delle utenze attraverso specifici report grafici;
- valutare l'efficienza energetica degli edifici monitorati, confrontandoli con gli edifici presenti nel DB del software (attività di benchmarking).

ambito di applicazione

Utenze comunali

costi

Risorse interne. Per l'attuazione degli strumenti è necessario prevedere l'acquisto di sistemi di monitoraggio e relative licenze sw.

indicatori di monitoraggio

Campagne di monitoraggio effettuate o sistemi di monitoraggio installati

strumento di attuazione

hw/sw di monitoraggio e relativo report di monitoraggio

7. AZIONI DI ADATTAMENTO

7.1 QUADRO DI VALUTAZIONE DEL CONTESTO

In questa sezione si riporta lo stato dell'arte del quadro di valutazione sull'adattamento per valutare l'avanzamento del processo di adattamento del Comune di Arzignano; a questo fine si riporta una tabella di valutazione inerente ad ogni azione prevista nelle fasi del ciclo di adattamento dettato dal JRC.

Tabella 7-1: indicatori per la tabella di autovalutazione e controllo dello stato di avanzamento degli strumenti di adattamento climatico (fonte: SECAP_Template)

Status Scale	Status	Indicative Completion Level
D	Not started or getting started	0-25 %
С	Moving forward	25-50 %
В	Forging ahead	50-75 %
A	Taking the lead	75-100 %

Per ogni fase viene restituita una valutazione in forma tabellare che è poi tradotta da un grafico a ragnatela, che corrisponde all'autovalutazione per ciascuna azione prevista nelle fasi di adattamento climatico. Di seguito si riporta la situazione del Comune di Arzignano per step:

- → Step 1 Strategy
- Step 2 Risk Vulnerabilities
- ≥ Step 3 -4 5 Actions
- Step 6 Indicators

 The state of the s

Tabella 7-2: tabella di autovalutazione e controllo dello stato di avanzamento degli strumenti di adattamento climatico (fonte: SECAP_Template)

Adaptation cycle steps	Actions	Self check of the State
	Adaptation commitments defined/integrated into the local climate policy	
TEP 1 - Preparing the ground for	Human, technical and financial resources identified	С
adaptation	Adaptation team (officer) appointed within the municipal administration and clear respondibilities assigned	d
	Horizontal (i.e. accross sectoral departments) coordination mechanisms in place	d
⇒ STRATEGY	Vertical (i.e. accross governance levels) coordination mechanisms in place	d
	Consultative and participatory mechanisms set up, fostering the multi-stakeholder engagement in the adaptation process	
	Continuous communication process in place (for the engagement of the different target audiences)	С
STEP 2 - Assessing risks &	Mappping of the possible methods & data sources for carrying out a <u>Risk & Vulnerability Assessment</u> conducted	С
ulnerabilities to climate change	Assessment(s) of climate risks & vulnerabilities undertaken	c
RISKS & VULNERABILITIES	Possible sectors of action identified and prioritised	С
	Available knowledge periodically reviewed and new findings integrated	С
	Full portfolio of adaptation options compiled, documented and assessed	
EPS 3 & 4 - Identifying, assessing nd selecting adaptation options	Possibilities of <u>mainstreaming adaptation</u> in existing policies and plans assessed, possible synergies and conflicts (e.g. with mitigation actions) identified	С
→ ACTIONS	<u>Adaptation Actions</u> developed and adopted (as part of the SECAP and/or other planning documents)	
	Implementation framework set, with clear milestones	d
STEP 5 - Implementing ACTIONS	Adaptation actions implemented and mainstreamed (where relevent) as defined in the adopted SECAP and/or other planning documents	d
ACTIONS	Coordinated action between mitigation and adaptation set	d
	Monitoring framework in place for adaptation actions	d
FEP 6 - Monitoring and evaluating	Appropriate M&E indicators identified	d
	Progress regularly monitored and reported to the relevant decision-makers	d
☐ INDICATORS	Adaptation strategy and/or Action Plan updated, revised and readjusted	d

Le aree del garfico in verde mostrano i settori presi in considerazione in modo più approfondito. Nello specifico, per Arzignano, i rischi presenti sul territorio e le filiere delle emergenze sono consolidate ma sono ancora da esplicitare e sviluppare le fasi proprie dei cicli di adattamento (valutati con la lettera D in tabella e nel grafico).

STEP 1 - Preparing the B STEP 6 - Monitoring 8 STEP 2 - Assessing evaluating risks & vulnerabilities D STEPS 3 & 4 -Identifying adaptation options STEP 5 - Implementing

Figura 7-1: Stato dell'arte (fonte: SECAP_Template)

Forest Fires

[please specify]

<u>Other</u>

Low

Dall'analisi degli studi presenti nel PAT, come esplicitato nel paragrafo dedicato, è emersa l'esistenza di fattori di rischio di tipo idrogeologico e geologico legate alla conformazione del territorio; dall'analisi del contesto geografico in cui è inserito il Comune, emerge invece un'evoluzione del clima che si muove verso periodi in cui si possono verificare ondate di calore intenso, fenomeni di precipitazioni di breve durata ma forte intensità. Da queste valutazioni è stato possibile individuare i rischi climatici relativi a Arzignano, per questi è stata compilata un'apposita tabella con lo scopo di evidenziare il livello di rischio del pericolo attuale, la variazione attesa nel livello di rischio, la variazione attesa nelle frequenze dei fenomeni e il periodo di tempo in cui si prevede che la frequenza/intensità del rischio cambi. I periodi di tempo tra i quali si può scegliere è attuale (ora), breve termine (o-5 anni), medio termine (5-15 anni) e lungo termine (oltre 15 anni). Di seguito si riporta la tabella di riferimento.

<< Current Risks >> << Anticipated Risks >> **Expected change Expected change** Climate Hazard Type Current hazard risk level **Timeframe** in intensity in frequency **Extreme Heat** Moderate Increase Short-term Increase Extreme Cold Low No change No change **Extreme Precipitation** Moderate Medium-term Increase Increase Long-term No change No change Sea Level Rise **Droughts** Low Increase Increase Long-term Storms Landslides Moderate Long-term

Tabella 7-3: tabella di definizione del rischio climatico (fonte: SECAP_Template)

A partire dai rischi climatici definiti come sopra descritto, si sono individuati i settori impattati sul territorio comunale. La tabella successiva descrive tutte le valutazioni di rischio e vulnerabilità (VRV) fatte sulla base dello scenario attuale. La VRV stabilisce la natura e la misura del rischio attraverso l'analisi dei pericoli potenziali e valutando la vulnerabilità che può costituire una minaccia o un danno potenziale per le persone. I beni, i mezzi di sostentamento e l'ambiente da cui essi dipendono

No change

No change

Impacted Policy Sector	Expected Impact(s)	Likelihood of Occurrence	Expected Impact Level	<u>Timeframe</u>
Buildings	Increased demand/or cooling and insulation	Likely	High	Short-term
Iransport	Damage to iransport infrastructure	Unikely	Low	Medium-term
Energy		[Drop-Down]	[Drop-Down]	[Drop-Down]
Water	Increased scarcity and choughts	Unlikely	Low	Long-term
Weste		[Drop-Down]	[Drop-Down]	[Drop-Down]
Land Use Planning	U.bankeatisland effect	Possible	Moderate	Medium-term
Agriculture & Forestry	Grop yield degradation	Likely	High	Short-term
Environment & Biodiversity	정	[Orap-Down]	[Drop-Down]	[Drop-Down]
Health	population (avvid and older	Passible	/ Moderate	Short-term
Civil Protection & Emergency	Processor.	[Drup-Down]	[Drop-Down]	[Drop-Down]
Tourism		[Drop-Down]	[Drop-Down]	[Drop-Dawn]
Other [please specify]	Ž.	[Drop-Down]	[Drop-Down]	[Drop-Down]

Tabella 7-4: tabella dei settori impattati (fonte: SECAP_Template)

7.2 DEFINIZIONE E DESCRIZIONE DELLE AZIONI

In questo paragrafo si riportano le descrizioni delle azioni che è stato possibile individuare valutando il contesto territoriale di Arzignano, i suoi elementi di rischio e i settori impattati dai rischi, andando a definire quindi le azioni di adattamento specifiche per il Comune.

AD. 1 EVENTI ESTREMI DI PIOGGIA

descrizione

Negli ultimi anni si è registrato un aumento di eventi estremi si pioggia ed è prevista una tendenza all'aumento del fenomeno nei prossimi decenni. L'aumento delle precipitazioni porta alla manifestazione di sempre più frequenti allagamenti.

Il Comune dovrà quindi impegnarsi a ridurre gli effetti dell'impermeabilizzazione e aumentare le aree permeabili, tenendo in considerazione, negli strumenti di pianificazione, le problematiche derivanti dal cambiamento climatico. Con l'adozione dell'allegato al regolamento edilizio il Comune potrà stabilire standard energetici per il nuovo costruito o il restauro, potrà regolamentare gli spazi pubblici e il verde urbano ed incentivare il recupero di aree ed edifici dismessi al fine di non andare a diminuire la percentuale di territorio permeabile.

AD.2 DIMINUZIONE DELLA PRESSIONE SULLE RISORSE IDRICHE

descrizione

Nello scenario attuale, in cui sono in aumento gli eventi estremi ma incrementano anche i periodi di siccità è necessaria una pianificazione adeguata per la gestione della risorsa idrica che comporti, come visto anche nelle azioni di mitigazione, la distribuzione di regolatori di flusso per diminuire i consumi idrici, il monitoraggio costantemente la rete acquedottistica cittadina per verificare l'esistenza di perdite e, nel caso, permettere interventi tempestivi, il miglioramento dell'efficienza degli impianti di irrigazione, oltre alla calendarizzazione di interventi di manutenzione delle caditoie, alla manutenzione della rete di drenaggio delle acque meteoriche ed alle attività di manutenzione degli

alvei.

AD.3 URBAN GREENING

descrizione

L'introduzione di nuove aree verdi in ambito urbano può essere uno dei metodi più efficaci per fronteggiare il problema dell'effetto isola di calore e allo stesso tempo migliorare la qualità dello spazio urbano aumentandone la biodiversità. Ciò può essere fatto con interventi di maggiore o minore portata e con diverso grado di efficacia: in ogni caso è bene sapere che anche la sola presenza di filari di alberi è in grado di fornire un grande contributo schermando la luce, offrendo riparo nei giorni più caldi e abbattendo la temperatura alla superficie di qualche grado, è anche utile a ridurre gli effetti di sbalzi termici e venti forti. La semplice ombreggiatura degli spazi è perciò un'azione tanto semplice quanto efficace, che può essere estesa anche alle superfici verticali degli edifici. E' inoltre necessario pianificare interventi di tutela e conservazione anche degli spazi verdi esistenti come per esempio campagne di parassitologia. Questo tipo di azione è funzionale al contrasto del consumo di suolo e alla salvaguardia della biodiversità del Comune.

AD.4 RISCHIO DESERTIFICAZIONE DEL TERRENO

descrizione

La siccità può provocare degrado e riduzione dei raccolti e nel lungo periodo potranno diventare inadeguati gli attuali sistemi idrici. Tale problematica è principalmente legata all'agricoltura e alla gestione sostenibile delle risorse idriche. L'agricoltura dovrà impegnarsi a gestire in modo sostenibile il suolo, ma è fondamentale che sia attuata una corretta pianificazione del territorio che tenga in considerazione la prevenzione del degrado ambientale e la protezione dell'ambiente. Inoltre, dovranno essere attuate campagne di informazione agli agricoltori e ai cittadini riguardanti le pratiche agricole sostenibili e le problematiche della conservazione del suolo.

AD.5 RIDUZIONE DELLA PRODUTTIVITÀ AGRICOLA

descrizione

L'agricoltura è molto esposta agli effetti dei cambiamenti climatici; gli sbalzi di temperatura, periodi prolungati di piogge o di siccità, la diminuzione delle risorse idriche e il cambiamento della qualità del suolo portano ad una diminuzione della produttività e della qualità dei prodotti.

Il settore agricolo dovrà quindi sempre più mettere in atto buone azioni di breve o lungo periodo.

Le azioni di breve periodo consistono in una valutazione della situazione attuale e delle problematiche che si stanno verificando a causa del cambiamento climatico, e nella messa in atto di pratiche per conservare l'umidità, la variazione delle date di semina e delle cultivar. Mentre le azioni a lungo periodo consistono nella variazione dell'uso del suolo, nell'aumento dell'efficienza dell'irrigazione.

Per mettere in atto tali azioni c'è bisogno di una consulenza adeguata al settore agricolo ma soprattutto sarà fondamentale prendere in considerazione la Politica Agricola Comune (PAC), che contribuisce a ridurre l'esposizione e la vulnerabilità agli effetti del cambiamento climatico e fa si che venga aumentata la resilienza di tale settore.

Dovranno essere inoltre valutate scelte più sostenibili per la lavorazione e il trattamento del suolo, si dovrà valutare l'innovazione a livello aziendale acquistando strutture e impianti adeguati per la difesa dagli eventi estremi invernali come protezione da gelo e grandine, o sistemi di irrigazione efficienti per evitare i problemi di siccità. In tal senso l'AC ha deciso di elaborare un Piano di Sviluppo Agricolo (PSA)

nel quale sono comprese delle azioni mirate a ridurre l'impatto di CO2 sul contesto comunale, nello specifico sono state individuate misure per ridurre l'impatto della zootecnia che intervengono sull'alimentazione degli allevamenti, sulle strutture di ricovero dei capi e sul miglioramento del rapporto tra lo spandimento degli effluenti e le emissioni. Vengono inoltre introdotte misure per diminuire le emissioni di ammoniaca in atmosfera legata all'uso di fertilizzanti. In generale, per migliorare le prestazioni dell'intero comparto si è scelto di puntare sulla sensibilizzazione costante nelle aziende e anche tra i cittadini, sulla sostenibilità della filiera agricola, quindi l'introduzione di mercati a km o e la diminuzione di uso di pesticidi e fertilizzanti chimici. Le azioni migliorative del comparto sono anche estese ad ambiti non specificatamente agricoli come la manutenzione del territorio, la messa a dimora di nuovi alberi in aree impervie e la creazione di punti di raccolta per l'ammasso di ramaglie o sfalci agricoli.

AD.6 CAMPAGNE DI SENSIBILIZZAZIONE

descrizione

Il Comune si impegnerà a realizzare campagne di informazione sul tema della salute dei cittadini, con l'obiettivo di rendere consapevole la popolazione degli impatti che può avere il cambiamento climatico sulla vita urbana e coinvolgere gli attori locali per proporre nuove iniziative di adattamento.

Le campagne di sensibilizzazione comprendono attività di comunicazione che spiegano gli impatti del cambiamento climatico, informandoli sulla qualità dell'aria, l'aumento delle temperature, la diminuzione delle piogge, le ondate di calore, l'aumento degli insetti e i rischi di contrarre nuove malattie.

Verrà spiegato come i rischi locali stanno cambiando e quale influenza avranno sulla popolazione.

Inoltre, il Comune potrà adottare un sistema di allerta in grado di avvisare i cittadini qualora si dovesse verificare un evento estremo come ad esempio inondazioni in modo da evitare incidenti e problematiche. Per rendere più efficace il sistema di allerta vengono predisposte dall'Amministrazione delle azioni che si possono definire preparatorie come l'organizzazione di esercitazioni di protezione civile e la predisposizione di un piano di supporto e assistenza per le persone anziane, disabili o deboli in occasione di ondate di calore, gelo o altre calamità naturali.

AD.7 RIDUZIONE DEL CONSUMO DI SUOLO

descrizione

La presenza di strumenti urbanistici che agiscano nell'ottica della riduzione del consumo di suolo sono funzionali al miglioramento della qualità degli spazi urbani e a ridurre gli effetti dei mutamenti climatici in quanto riduce il diffondersi di isole di calore, l'impoverimento di aree verdi o libere tutelando l'esistente.

7.3 REPORT DELL'ADATTAMENTO

Utilizzando il SECAP_Template messo a disposizione dal JRC, i rischi climatici individuati e i settori impattati sono messi a sistema e rappresentati in automatico, così come alcune informazioni legate all'avanzamento dei processi di adattamento e alle tipologie delle azioni. Di seguito si riportano i grafici, molto utili per comunicare con gli stakeholders e per spiegare le scelte prese dall'AC, poiché mostrano a colpo d'occhio lo stato di avanzamento del processo di adattamento.

Figura 7-2: matrice di valutazione del rischio (fonte: SECAP_Template)

Climate Hazard Type	Risk Level	Expected change in intensity	Expected chang in frequency	e Timeframe
Extreme Heat	!!	↑	↑	•
Extreme Cold	!	\leftrightarrow	\leftrightarrow	
Extreme Precipitation	!!	↑	↑	>
Floods	!	\leftrightarrow	\leftrightarrow	
Sea Level Rise				
Droughts	!	↑	↑	\triangleright
Storms				
Landslides	!!	↑	↑	
Forest Fires	!	!: Low ↑: I	ncrease [:	Current
Other [please specify]			•	: Short-term
•		!!!: High ↔:	No change	► : Medium-term
		[?]: Not Know n [?]	: Not know n	►►: Long-term
			[1	?]: Not know n

Figura 7-3: matrice di valutazione dell'impatto (fonte: SECAP_Template)

Impacted Policy Sector	Occurrence		xpected act Level	Timeframe			
Buildings	Likely		!!!				
Transport	Unlikely		!				
Energy							
Water	Unlikely		!	>> 1	•		
Waste							
Land Use Planning	Possible		!!				
Agriculture & Forestry	Likely		!!!				
Environment & Biodiversity							
Health	Possible		!!	•			
Civil Protection & Emergency	l:	: Low	↑: Increase	е	: Current		
Tourism	!!	: Moderate	↓: Decreas	se	►: Short-term		
	!	!! : High	↔: No cha	nge	► ►: Medium-terr		
Other [please specify]	[?]: Not Know n	[?]: Not kn	now n	►►►: Long-teri		
					[?]: Not know n		

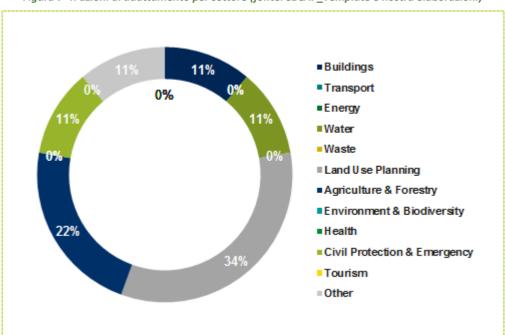
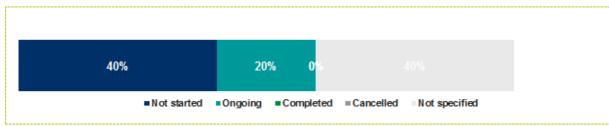



Figura 7-4: azioni di adattamento per settore (fonte: SECAP_Template e nostra elaborazioni)

8. SISTEMA DI MONITORAGGIO

Il monitoraggio costituisce l'attività di controllo degli effetti del PAESC ottenuti in fase di attuazione delle scelte dallo stesso definite, attività finalizzata a verificare tempestivamente l'esito della messa in atto delle misure, con la segnalazione di eventuali problemi, e ad adottare le opportune misure di ri-orientamento. Tale processo non si riduce quindi al semplice aggiornamento di dati ed informazioni, ma comprende anche un'attività di carattere interpretativo volta a supportare le decisioni durante l'attuazione del piano.

Il PAESC prevede, rispetto agli impegni assunti con la Comunità Europea, di effettuare, dopo 4 anni dall'approvazione del Piano un report di monitoraggio per verificare l'attuazione delle azioni previste per il Piano di Mitigazione e dopo 6 anni dall'approvazione del PAESC anche il Piano di Adattamento, l'evoluzione del quadro emissivo rispetto agli obiettivi stabiliti per la riduzione delle emissioni di CO₂. Queste fasi di monitoraggio permettono di verificare l'efficacia delle azioni previste ed eventualmente di introdurre le correzioni/integrazioni/aggiustamenti ritenuti necessari per meglio orientare il raggiungimento dell'obiettivo. Tale attività biennale permette di ottenere quindi un continuo miglioramento del ciclo Plan, Do, Check, Act (pianificazione, esecuzione, controllo, azione).

8.1 RUOLO DELL'AMMINISTRAZIONE COMUNALE

Il monitoraggio avviene su più fronti: da un lato è necessario monitorare gli andamenti dei consumi comunali, e quindi delle emissioni, tramite una costante raccolta di dati; dall'altro risulta utile verificare l'efficacia delle azioni messe in atto, tramite indagini e riscontri sul campo. In entrambi i casi l'AC ricopre un ruolo di fondamentale importanza, vista la vicinanza con la realtà locale.

8.1.1 La raccolta dati

Così come già svolto per la redazione del BEI, per poter monitorare l'evolversi della situazione emissiva comunale è necessario disporre di anno in anno dei dati relativi ai consumi:

- ≥ elettrici e termici degli edifici pubblici
- y del parco veicolare comunale e/o del trasporto pubblico
- ≥ di gas naturale e di energia elettrica dell'intero territorio comunale

L'AC dovrà quindi continuare a registrare i consumi diretti di cui è responsabili e richiedere annualmente i dati dei distributori di energia elettrica e gas naturale, in modo tale da avere sempre a disposizione dati aggiornati.

Il monitoraggio dei consumi non direttamente ascrivibili al Comune è garantito dall'accesso alle banche dati regionali da parte dell'applicativo CO₂₀ di cui l'AC sarà dotata.

8.1.2 Il monitoraggio delle azioni

Al contempo, nel momento in cui l'AC deciderà di implementare una delle azioni previste dal PAESC, sarà necessario documentare il più possibile nel dettaglio la misura o l'iniziativa effettuata.

Per quanto riguarda le azioni sul patrimonio pubblico, il monitoraggio risulta essere di semplice attuazione, in quanto l'AC, essendo diretta interessata, sarà al corrente dell'entità dei progetti approvati. Inoltre sarà possibile effettuare un controllo sulla loro efficacia, valutando i risparmi energetici effettivamente conseguiti, deducibili dal monitoraggio effettuato sui consumi di edifici pubblici, illuminazione pubblica e parco veicolare pubblico.

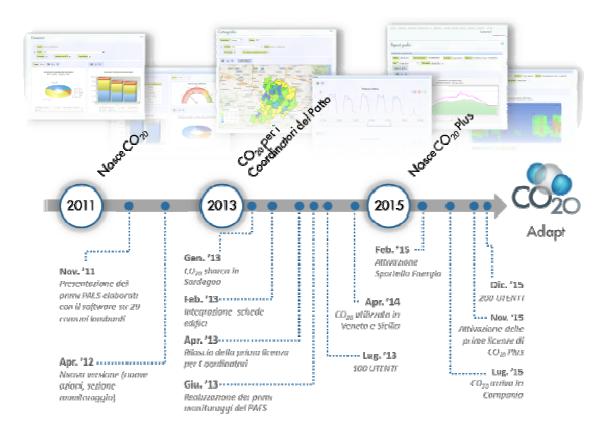
Le azioni puntuali o di promozione volte a ridurre le emissioni dovute al settore residenziale dovranno invece essere valutate a diversi livelli. Ad esempio, non solo sarà necessario valutare la partecipazione dei cittadini agli incontri di sensibilizzazione e informazione organizzati, ma sarà anche indispensabile accertare se gli incontri abbiano portato a risultati tangibili, attraverso campagne di indagine o simili.

Allo stesso tempo è fondamentale che l'AC mantenga il dialogo con gli stakeholder locali, avendo così modo di verificare l'attuazione di eventuali azioni, anche nel caso in cui per tali soggetti non sia stato possibile includere interventi specifici nella fase di stesura del PAESC.

Resta comunque sempre necessario in ultima analisi interpretare gli andamenti dei consumi riscontrati mediante la raccolta dati oggetto del precedente paragrafo, per verificare se le azioni attivate stiano producendo gli effetti previsti dal PAESC in termini quantitativi.

8.2 SOFTWARE CO₂₀

CO20 è uno strumento innovativo e avanzato, ideato e realizzato da TerrAria e reso disponibile a partire dal 2011, nato come strumento di supporto per i firmatari del Patto dei Sindaci, chiamati a costruire i bilanci energetico-emissivi del proprio territorio di competenza e a definire un piano di azione concreto per il raggiungimento degli obiettivi fissati dall'Unione Europea.


Da subito, il software è stato pensato per consentire di effettuare periodicamente un monitoraggio dell'efficacia complessiva del Piano di intervento, permettendo inoltre di divulgare attraverso il web gli impegni presi dall'Ente. All'interno del software CO20 è stato successivamente integrato un sistema per il monitoraggio in tempo reale dei consumi delle utenze di competenza dell'Ente, denominato CO_{20} Plus.

Con la presentazione del nuovo Patto dei Sindaci per il Clima e l'Energia, avvenuta a fine 2015, si è aperta una nuova sfida: l'introduzione dei concetti di mitigazione e adattamento ai cambiamenti climatici nella nuova versione del software (CO20 Adapt), temi già affrontati da TerrAria nell'ambito del progetto europeo IRIS (Improve Resilience of Industry Sector), il cui obiettivo è il

miglioramento della resilienza del settore industriale attraverso azioni di adattamento in sinergia con le politiche ambientali.

Un supporto di particolare importanza per il processo di costruzione (valutazione ex-ante) e di attuazione (valutazione ex-post) delle azioni del Piano dell'AC è costituito dal software CO₂₀, un'applicazione web sviluppata dalla società TerrAria sulla base di esperienze maturate sia nello sviluppo di sistemi informativi ambientali (SIRENA, INEMAR, CENED...), sia in termini progettuali ed attuativi.

L'applicativo CO₂₀ è uno strumento ideale a supporto della pianificazione energetica locale, della programmazione e del monitoraggio delle politiche comunali in tale ambito, realizzato specificatamente per il supporto alla definizione e redazione del PAES all'interno del percorso previsto dal Patto dei Sindaci.

All'AC sono state fornite le credenziali da inserire nell'area riservata del sito <u>www.co20.it</u> mediante le quali poter accedere al sistema e caricare i dati specifici, potendo così:

costruire l'inventario base delle emissioni di CO₂ (BEI) ed i successivi inventari di aggiornamento (MEI) sia in termini di consumi energetici finali che di emissioni di CO₂ dettagliati per anno, settore (residenziale, terziario pubblico e privato, illuminazione pubblica, industria non ETS, agricoltura, trasporto pubblico e privato) e vettore (combustibili fossili e fonti rinnovabili);

- visualizzare, attraverso grafici e tabelle, i consumi e le emissioni di CO₂ del BEI e degli anni successivi (assolute o procapite e conteggiando o meno i settori industriale e/o agricolo);
- visualizzare, attraverso grafici e tabelle, la produzione di energia elettrica e termica locale all'anno di riferimento del BEI e negli anni successivi;
- 4. individuare l'obiettivo in termini di riduzione delle emissioni di CO₂ da raggiungere attraverso il PAESC;
- inserire in apposite interfacce gli indicatori delle azioni al fine di stimare l'efficacia del PAESC in termini di riduzione delle emissioni di CO₂, risparmio energetico e consumo di energia proveniente da FER;
- 6. valutare ex-ante l'efficacia delle misure che si pensa di adottare all'interno del PAESC;
- 7. rendicontare periodicamente la fattibilità delle azioni proposte ed il raggiungimento degli obiettivi;
- 8. produrre in automatico le tabelle (in formato xls) e i grafici (in formato immagine) dei consumi, delle emissioni, della produzione elettrica/termica;
- 9. produrre in automatico il report richiesto dal JRC (in formato xls) contenente i dati da inviare biennalmente alla Commissione Europea;
- 10. verificare la quota di raggiungimento dell'obiettivo del PAESC man mano che si introducono le azioni attraverso appositi "cruscotti web";
- pubblicare sul proprio sito l'accesso pubblico all'applicativo in modo da permetterne la visualizzazione ai propri cittadini (senza possibilità di modificarne i contenuti).

Nello schema successivo è illustrato il flow-chart concettuale dello strumento informatico che vede un'interfaccia web attraverso la quale è possibile:

- ≥ inserire dati regionali e comunali dei consumi/produzione energetici da un lato e dall'altro inerenti le misure del PAESC;
- ☑ integrare i dati locali di cui al punto precedente principalmente inerenti i consumi e la produzione di FER del Comune inteso come Istituzione con i dati comunali stimati dalla disaggregazione dei dati ISPRA secondo una logica di integrazione dei due approcci (top-down quello regionale e bottom-up quello comunale);
- ≥ visualizzare grafici e tabelle relativi al BEI e agli inventari successivi (consumi/emissioni/produzione FER) e cruscotti dello stato di attuazione del PAES e produrre i report richiesti dall'UE.

Consumii settore pubblico **INPUT** SINAnet dall'utente Dati distributori locali energia Procluzione locale di energia Previsioni di espansione /CI Istat Azioni previste/realizzate **GRAFICI** BASELINE e TREND · Consumi energetici Emissioni di CO₂ RISCHI E VULNERABILITÀ REPORT · Rischio attuale e variazioni attese Vulnerabilità e degli impatti previsti PIANO D'AZIONE **OUTPUT** · Definizione dell'obiettivo · Definizione di azioni concrete: MAPPE - Risparmi energetici/emissivi e produzione da FER Costi e tempi di ritorno · % obiettivo raggiunta

figura 8-1 _ architettura concettuale dell'applicativo CO₂₀

Si precisa che, per quanto riguarda la valutazione degli effetti delle azioni, la metodologia implementata all'interno del software CO_{20} stima i risparmi energetici sulla base degli algoritmi sviluppati dall'AEEG per la quantificazione dei Titoli di Efficienza Energetica (TEE) e per gli interventi non inclusi nei TEE si fa ricorso ad algoritmi specifici utilizzati dalle Energy Saving Company (ESCo) nella stima dei benefici economici.

Segue una presentazione generale del software CO_{20} attraverso le sue principali schermate (estratto del manuale del software).

Consumi

Consumi

Vent Le

Sea Start for inhuman

Le start S

figura 8-2 _ applicativo CO₂₀: sezione consumi energetici

figura 8-3 _ applicativo CO₂₀: sezione emissioni

figura 8-4 _ applicativo CO₂₀: sezione obiettivo

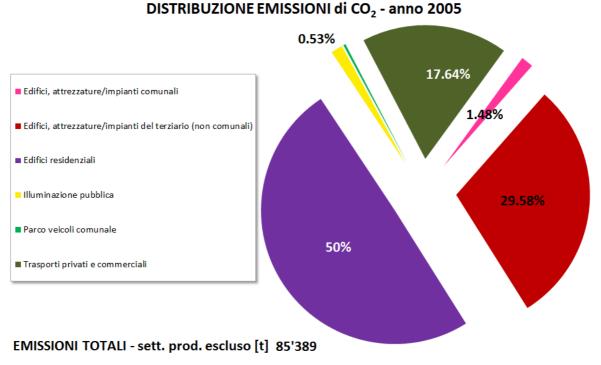
figura 8-5 _ applicativo CO₂₀: sezione azioni

9. CONCLUSIONI

9.1 CONTESTO COMUNALE

Il comune di Arzignano, in provincia di Vicenza, ha un'estensione di circa 35 km² ed un'altitudine compresa tra i 76 e i 630 m slm. È collocato sui Monti Lessini e arriva fino alla Valle del Chiampo, è proprio il Torrente Chiampo che caratterizza il territorio in cui è inserito il Comune, avendo una rilevanza anche nella sua conurbazione.

Per quanto riguarda l'edificato residenziale, le analisi e le elaborazioni effettuate a partire dai dati ISTAT hanno evidenziato come ben il 70% degli edifici sia stato costruito più di 30 anni fa, la maggior parte degli edifici ha numero di piani inferiore o uguale a due.


Dal punto di vista del numero di abitanti, il comune di Arzignano è caratterizzato da un trend di costante crescita dal 2001 al 2010, si registra un calo nel numero di abitanti tra il 2010 e il 2011 per poi ricominciare a crescere dal 2011 al 2015.

9.2 ESITI DEL BEI

L'inventario di base delle emissioni di CO₂ è stato ricostruito a partire dalla disaggregazione a livello comunale, per settore e per vettore, dei dati estratti e validati dalla banca dati provinciale ISPRA. Tali dati sono stati integrati per la parte pubblica con i dati di consumo disponibili, registrati dall'Amministrazione Comunale di Arzignano (edifici comunali, illuminazione pubblica e parco veicoli comunale). Al contempo, è stata effettuata un'analisi della produzione locale di energia elettrica a partire dalle informazioni ricavate dalla banca dati nazionale ATLASOLE (relativa agli impianti fotovoltaici installati nei comuni italiani), nonché dalle informazioni ricevute dall'AC stessa: al 2015, la produzione potenziale di energia elettrica da fonti rinnovabili risulta essere pari al 23% dei consumi di energia elettrica del settore residenziale.

figura 9-1 _ distribuzione percentuale delle emissioni di CO₂ per settore nel BEI di Arzignano, settore produttivo escluso (fonte: nostra elaborazione)

Peso Pubblico 3.1%

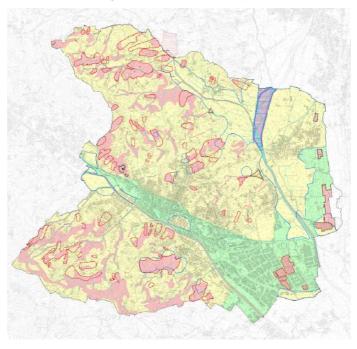
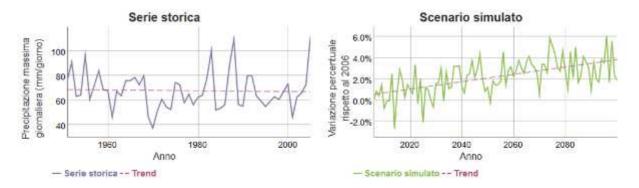
Il quadro emissivo all'anno BEI ricavato dall'analisi dei consumi del territorio di Arzignano, da cui risulta escluso il settore produttivo in accordo con la definizione dell'obiettivo, mostra come il settore maggiormente emissivo sia il residenziale, responsabile del 50% delle emissioni complessive, seguito dal settore terziario con circa il 30% del totale. Le emissioni riconducibili direttamente al comparto pubblico risultano essere pari al 3.1% circa delle emissioni totali del territorio comunale. Si rileva, infine, che, escludendo il settore produttivo, la maggior parte delle emissioni è dovuta ai consumi di gas naturale (47%), di energia elettrica (34%), di gasolio (9%) e di benzina con l'8% circa.

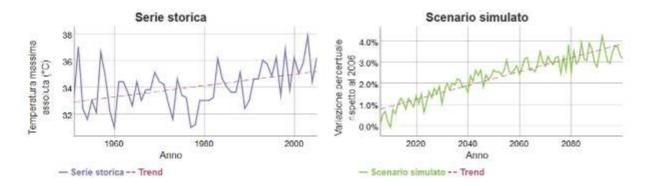
9.2.1 Rischi e vulnerabilità

Dall'analisi degli strumenti urbanistici del Comune sul territorio sono state individuate le seguenti due tipologie di rischio naturale:

- → Rischio geologico
- → Rischio idrogeologico

figura 9-2 _ distribuzione percentuale delle emissioni di CO2 per settore nel BEI di Arzignano, settore produttivo escluso (fonte: nostra elaborazione)


Figura 9-3: precipitazioni estreme, precipitazione massima giornaliera in mm/giorno, serie storica (sinistra) e scenario cumulato (destra) (fonte: IRIS)

Valutando la serie storica delle precipitazioni massime giornaliere emerge un trend di calo, simulando invece lo scenario al 2100 si può notare la possibile evoluzione all'aumento del fenomeno, il rischio di esondazioni potrebbe quindi aumentare.

Figura 9-4: temperature massime in °C, serie storica (sinistra) e scenario cumulato (destra) (fonte: IRIS)

Gli scenari simulati per il fenomeno denotano un trend di crescita e quindi, potenzialmente, l'inasprirsi rispettivamente del rischio ondate di calore.

9.3 BEI-MEI

Fondamentale per calibrare in modo completo l'obiettivo al 2030 è importante valutare quale sia l'evoluzione dello scenario dei consumi e delle emissioni del Comune al 2015.

Se si analizzano i consumi si può notare una diminuzione totale del 15% tra il 2005 e il 2015, questa diminuzione è imputabile in modo particolare al settore residenziale.

Consumi Energetici **Vettore: Tutti** 800 GWh 640 GWh 480 GWh 320 GWh 160 GWh 0 Wh ii. EdificiP ... Agricolo IlluminP ... Industria ii. Residenziale II. Terziario ii. Trasporto II. TrasportoP

Figura 9-5: Consumi energetici del Comune di Arzignano al 2005 e al 2015 (fonte: CO20)

Analizzando la suddivisione dei consumi per combustibili si nota un decremento dei consumi in generale ma in particolare di energia elettrica e gas naturale:

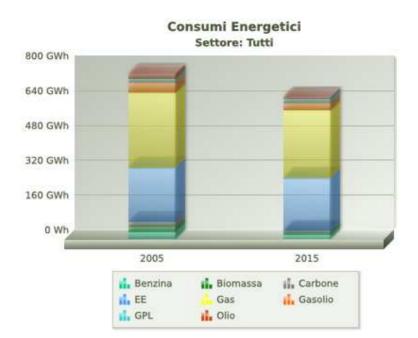


Figura 9-6: Consumi energetici per vettore del Comune di Arzignano al 2005 e al 2015 (fonte: CO20)

Sia i consumi che le emissioni di Arzignano sono in calo, questo restituisce una buona prospettiva nell'affrontare la pianificazione dell'obiettivo di riduzione delle emissioni al 2030.

9.4 OBIETTIVO DI RIDUZIONE DELLE EMISSIONI AL 2030

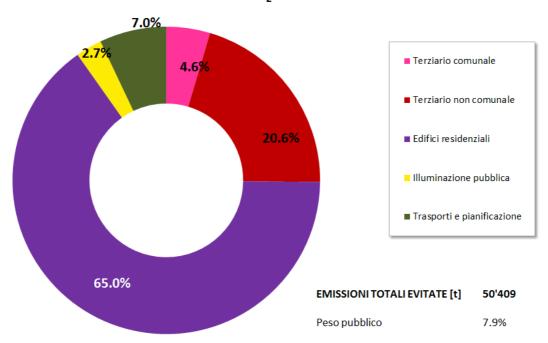
L'obiettivo di riduzione delle emissioni al 2030 è stato calcolato secondo quanto previsto dalle Linee Guida del JRC rispetto al BEI relativo al 2005, escludendo le emissioni del settore produttivo ma considerando il settore agricolo, sia in termini assoluti che procapite e la scelta è ricaduta sulla seconda opzione: attraverso le azioni del PAESC di Arzignano è infatti possibile raggiungere e superare un obiettivo di riduzione delle emissioni assolute del 40%

Per quantificare correttamente la riduzione complessiva che il PAESC deve prevedere per far sì che l'obiettivo minimo venga rispettato, sono stati anche considerati il trend demografico e. Si è quindi stimato un incremento emissivo al 2040 pari a 8'810 rispetto alla situazione al 2005 e si è assunto che al 2030 le emissioni totali, escluso il settore produttivo, saranno pari a circa 62'694 tonnellate, nell'ipotesi che le emissioni relative al patrimonio esistente rimangano invariate rispetto al BEI: la riduzione minima (40% delle emissioni all'anno BEI) di emissioni da ottenere al 2030 è stata dunque stimata in circa 41'796 tonnellate. Considerando l'obiettivo di fissato per il PAESC di Arzignano, pari alla diminuzione del 40% delle emissioni assolute, tale riduzione risulta superiore e pari a 50'606 tonnellate.

9.5 VISION E AZIONI

La vision di Arzignano si basa sui seguenti principi:

- ☑ incentivare l'efficienza energetica e lo sviluppo sostenibile rendendo Arzignano un luogo in cui lo stile di vita e le trasformazioni future contribuiscono allo sviluppo sostenibile, sfruttando il ruolo di pianificatore attribuito al Comune;
- → migliorare la qualità energetica ambientale dell'esistente, agendo prioritariamente sugli edifici pubblici e coinvolgendo i settori privati (in particolare residenziale e terziario) in un processo di efficientamento sia della dotazione impiantistica che del patrimonio edilizio e favorendo al contempo la diffusione delle fonti energetiche rinnovabili.
 - ≥ attivare politiche e strategie per incrementare la resilienza locale attraverso la consapevolezza e la conoscenza di azioni rivolti alla riduzione del rischio al fine di prevenire i potenziali impatti generati.


Per quanto riguarda le azioni previste per il comparto pubblico, l'AC di Arzignano dovrà occuparsi dell'organizzazione delle attività previste nonché del monitoraggio dei consumi legati a tali settori. Relativamente al comparto privato, invece, l'AC sarà invece responsabile delle attività di:

- ≥ aggiornamento degli strumenti urbanistici e del Regolamento Edilizio con criteri energetici conformi alla normativa vigente;
- ▶ promozione presso cittadini attraverso campagne di informazione sulle possibilità di intervento sul patrimonio edilizio e sulla dotazione impiantistica, sul tema della diffusione delle fonti rinnovabili e sulla mobilità alternativa, nonché sulle forme di incentivi messi a disposizione dallo Stato per i diversi campi affrontati, anche mediante l'eventuale istituzione di uno Sportello Energia presso gli uffici comunali;
- monitoraggio delle azioni previste dal PAESC.

figura 9-7_ quote percentuali di raggiungimento dell'obiettivo del PAESC per settore (fonte: nostra elaborazione)

EMISSIONI TOTALI di ${\rm CO_2}$ EVITATE PER SETTORE

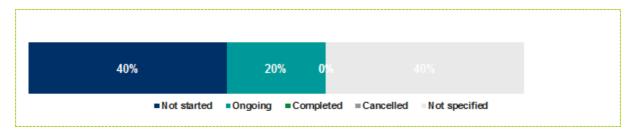

Come si può notare dal grafico riportato sopra, la maggior parte dell'obiettivo di riduzione del PAESC sarà raggiunta agendo sulle emissioni del settore residenziale; l'AC può invece agire direttamente sui consumi pubblici, raggiungendo una riduzione emissiva pari a più del 7.9% dell'obiettivo. Un quadro riassuntivo del PAESC viene fornito nella tabella seguente, in cui si riporta la situazione emissiva del comune di Arzignano al 2011 e al 2030, valutata escludendo e considerando l'effetto delle azioni del Piano.

tabella 9-1 _ quadro riassuntivo del PAESC di Arzignano (fonte: nostra elaborazione)

CALCOLO DELL'OBIETTIVO DI RIDUZIONE												
Anno	2005	2015	2030 (senza PAESC)	2030 (con PAESC)								
Popolazione [ab]	25'143	25'843	26'274	26'274								
OBIETTIVO IN TERMINI ASSOLUTI - Settore produttivo escluso												
Emissioni totali [t]	85'389	75'875	86'807	51'233								
Obiettivo di riduzione [t]	34'155	24'642	35'574	-								
OBIETTIV	O PROCAPITE - Set	tore produttivo	escluso									
Emissioni totali [t/ab]	3.40	3.40	3.30	2.04								
Obiettivo di riduzione procapite [t/ab]	1.36	1.36	1.27	-								
Obiettivo di riduzione [t]	34'155	35'106	33'269	-								

Per ciò che concerne la sezione di adattamento climatico la situazione è la seguente:

Appendice

SETTORE	AZIONE	Emissioni BEI [t]	%	Energia risparmiat a [MWh]	FER [MWh]	Totale CO2 risparmi ata [t]		issioni ettore	, , , , , ,	iettivo nimo	Costi pubblici	Costi privati	Caratterizzazio ne temporale
	Installazione EBF			282	0	51	4.3%		0.11 %		€ -	€ -	2015 - 2030
	Interventi a favore del risparmio energetico			0	0	0	0.0%		0.00		€ -	€ -	2015 - 2030
	Interventi a favore del risparmio energetico			1'693	0	308	25.7 %		0.6%		€ -	€ -	2005 - 2030
TERZIARIO COMUNALE	Fotovoltaico su edifici pubblici	1'245	1.2%	0	89	52	4.2%	184.8 %	1 0 1%	4.54%	€ 175'000	€ 105'000	2008 - 2015
	Acquisto di energia verde			0	0	1'875	150.7 %		3.7%		€ -	€ -	2005 - 2030
	Acquisto di energia verde			0	0	0	0.0%		0.00 %		€ -	€ -	2015 - 2030
	Altro			0	0	0	0.0%		0.000		€ -	€ -	2015 - 2030
	Altro		32.3%	0	0	0	0.0%		0.00 %		€ -	€ -	2005 - 2030
TERZIARIO NON	Condizionamento estivo in classe A	33'722		2'914	0	1'705	5.1%	30.3 9 % 10	3.37 %	20.21%			2008 - 2015
COMUNALE	Riqualificazione impianto di illuminazione	33 / 22		8'742	0	5'114	15.2 %		10.11	20.21/6	€ 175'000	€ 105'000	2005 - 2030
	Fotovoltaico su terziario non comunale			0	5'828	3'410	10.1 %		6.74 %		€ -	€ -	2005 - 2030
RESIDENZIALE	Teleriscaldamento/raffrescamento + cogenerazione a fonti rinnovabili	51'758	49.5%	0	0	0	0.0%	64.6 %	0.0%	66.1%	€ -	€ -	2015 - 2030
	Sostituzione lampadine a incandescenza (2011-2020)			938	0	549	1.1%		1.1%		€ 1'000	€ 152'000	2015 - 2030
	Sostituzione caldaia unifamiliare (metodologia Scheda Tecnica n°3T dell'AEEG)			33'354	0	6'067	12.2 %		12.4 %		€ 1'000	€ 67'000'0 00	2005 - 2030
	Sostituzione serramenti			9'672	0	1'759	3.5%		3.6%		€	€	2005 - 2030

SETTORE	AZIONE	Emissioni BEI [t]	%	Energia risparmiat a [MWh]	FER [MWh]	Totale CO2 risparmi ata [t]	% emissioni del settore				Costi pubblici	Costi privati	Caratterizzazio ne temporale
											2'000	16'700'0 00	
	Realizzazione cappotto esterno (edifici a 1-2 piani)			17'300	0	3'147	6.3%		6.4%		€ 2'000	€ 23'800'0 00	2015 - 2030
	Isolamento copertura (edifici a 1-2 piani)			6'580	0	1′197	2.4%		2.5%		€ 2'000	€ 6'190'00 0	2005 - 2030
	Isolamento copertura (edifici con più di 2 piani)			5'344	0	972	1.9%		2.0%		€ 1'000	€ 5'030'00 0	2015 - 2030
	Sostituzione frigocongelatori			2'989	0	1'749	3.4%		3.5%		€ 2'000	€ 6'100'00 0	2005 - 2030
	Condizionamento estivo in classe A			50	0	29	0.1%		0.1%		€ 1'000	€ 4'560'00 0	2015 - 2030
	Sostituzione di caldaie centralizzate			5'082	0	925	1.9%		1.9%		€ 1'000	€ 8'710'00 0	2015 - 2030
	Installazione di valvole termostatiche (impianti autonomi)			6'575	0	1'196	2.4%		2.5%		€ 1'000	€ 1'840'00 0	2015 - 2030
	Sostituzione di caldaie a servizio di impianti autonomi			5'419	0	8'264	16.6 %		16.9 %		€ 1'000	€ 7'410'00 0	2005 - 2030
	Installazione di pompe di calore aria-aria o aria-acqua			14'238	3'750	858	2.0%		2.0%		€ 1'000	€ 9'040'00 0	2015 - 2030
	Altro			0	0	0	0.0%		0.0%		€ -	€ -	2005 - 2030
	Altro			0	0	0	0.0%		0.0%		€ -	€ -	2015 - 2030
	Fotovoltaico su edifici residenziali			0	6'452	3'774	7.3%		7.5%		€	€	2005 - 2030

a 1-2 piani (<20kW) 20'200'0

SETTORE	AZIONE	Emissioni BEI [t]	%	Energia risparmiat a [MWh]	FER [MWh]	Totale CO2 risparmi ata [t]	% emissioni del settore				% obiettivo minimo		Costi pubblici	Costi privati	Caratterizzazio ne temporale
												00			
	Fotovoltaico su edifici residenziali con più di 2 piani (<20kW)			0	483	282	0.5%		0.6%		€ 1'000	€ 1'510'00 0	2019 - 2030		
	Altro			0	0	0	0.0%		0.0%	%	€ -	€ -	2015 - 2030		
	Solare termico domestico (metodologia Scheda Tecnica n°8T dell'AEEG)			0	8'644	1'572	3.1%		3.2%		€ 1'000	€ 11'100'0 00	2015 - 2030		
	Installazione di pompe di calore geotermiche			0	0	0	0.0%		0.0%		€ -	€ -	2015 - 2030		
	Altro			0	0	0	0.0%		0.0%		€ -	€ -	2015 - 2030		
ILLUMINAZION	Sostituzione di componenti	- 1'185	1.1%	311	0	182	15.4 %	115.4	0.4%	2.7%	€ 1'312'150	€ -	2015 - 2030		
E PUBBLICA	Acquisto di energia verde			0	2'025	1'185	100.0 %	%	% 2.3%		€ 4'051	€ -	2005 - 2030		
AGRICOLTURA	Impianti fotovoltaici in ambito agricolo	1'563	1.5%	0	0	0	0.0%	0.0%	0.0%	0.0%	€ -	€ -	2005 - 2030		
VEICOLI COMUNALI E	Sostituzione di mezzi comunali	230	0.22%	3	0	1	0.3%	143.4 %	0.0%	0.1%	€ 10'000	€ -	2015 - 2030		
MOBILITA' SOSTENIBILE	Sostituzione di mezzi comunali con mezzi a metano/GPL			89	0	65	28.4 %		0.13 %	0.4%	€ 1'000	€ -	2005 - 2030		
	Istituzione PEDIBUS			467	0	119	51.7 %		0.23 %	0.4%	€ 1'000		2005 - 2030		
	Istituzione PEDIBUS			233	0	59	25.8 %		0.12 %	0.2%	€ 1'000		2005 - 2030		
	Realizzazione piste ciclabili			233	0	59	25.8 %		0.12	0.1%	€ 1'000		2005 - 2030		
	Altro			0	0	0	0.0%	0.00 %		0.0%	€ 1'000		2005 - 2030		
	Altro			0	0	0	0.0%		0.00	0.0%	€ 1'000		2005 - 2030		
	Altro			0	0	0	0.0%		0.00	0.0%	€		2005 - 2030		

SETTORE	AZIONE	Emissioni BEI [t]	%	Energia risparmiat a [MWh]	FER [MWh]	Totale CO2 risparmi ata [t]	% emissioni del settore				Costi pubblici	Costi privati	Caratterizzazio ne temporale
									%		1'000		
	Altro			0	0	0	0.0%		0.00 %	0.0%	€ 1'000		2005 - 2030
	Altro			0	0	0	0.0%		0.00 %	0.0%	€ 1'000		2005 - 2030
	Altro			0	0	0	0.0%		0.00 %	0.0%	€ 1'000		2005 - 2030
	Altro			0	0	0	0.0%		0.00 %	0.0%	€ 1'000		2005 - 2030
	Altro			0	0	0	0.0%		0.00 %	0.0%	€ 1'000		2005 - 2030
	Altro			0	0	0	0.0%		0.00 %	0.1%	€ 1'000		2005 - 2030
	Altro			45	0	26	11.4 %		0.1%	0.1%	€ 1'000		2005 - 2030
	Altro			0	0	0	0.0%		0.00 %	0.0%	€ 1'000		2005 - 2030
TRASPORTI	Rinnovo parco autoveicolare	14'787	14.2%	11'370	2'361	3'499	23.7 %	23.7	6.9%	7.6%	€ 1'000	€ 8'710'00 0	2015 - 2030
	Razionalizzazione della raccolta rifiuti			0	0	0	0.0%	0.0%	0.0%		€ 1'000	€ 1'840'00 0	2005 - 2030
	Altro			0	0	0	0.0%	0.0%					2005 - 2030
PIANIFICAZION	Piano del verde pubblico			0	0	0	0.0%	0.0%					2005 - 2030
E	Piano del verde pubblico	-	-	0	0	0	0.0%	0.0%					2005 - 2030
	Altro			0	0	0	0.0%	0.0%					2005 - 2030
	Altro			0	0	357	0.7%	0.0%	0.7%				2005 - 2030
	Altro			0	0	0	0.0%	0.0%	0.00 %				2005 - 2030
	TOTALE	104'489	100%	133'924	29'632	50'409			10	2%	1'713'201	200'102' 000	

